ترغب بنشر مسار تعليمي؟ اضغط هنا

BK Lyncis: The Oldest Old Nova?... And a Bellwether for Cataclysmic-Variable Evolution

74   0   0.0 ( 0 )
 نشر من قبل Jonathan Kemp
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joseph Patterson




اسأل ChatGPT حول البحث

We summarize the results of a 20-year campaign to study the light curves of BK Lyncis, a nova-like star strangely located below the 2-3 hour orbital period gap in the family of cataclysmic variables. Two apparent superhumps dominate the nightly light curves - with periods 4.6% longer, and 3.0% shorter, than P_orb. The first appears to be associated with the stars brighter states (V~14), while the second appears to be present throughout and becomes very dominant in the low state (V~15.7). Starting in the year 2005, the stars light curve became indistinguishable from that of a dwarf nova - in particular, that of the ER UMa subclass. Reviewing all the stars oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 30 December 101, and (b) it has been fading ever since, but has taken ~2000 years for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behavior is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period novalikes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because theyre just getting started in their postnova cooling). Four: why the orbital periods, accretion rates, and white-dwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced postnova brightness boosts the mean mass-transfer rate). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides P_orb, is time since the last classical-nova eruption.

قيم البحث

اقرأ أيضاً

The morphology and optical spectrum of IPHASXJ210205+471015, a nebula classified as a possible planetary nebula, are however strikingly similar to those of ATCnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obt ained high-resolution narrow-band [O III] and [N II] images and deep GTC OSIRIS optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, whilst an [O III]-bright bow-shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow-shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hours, which is attributed to a binary system. The optical spectrum is notably similar to that of RWSex, a cataclysmic variable star (CV) of the UXUMa nova-like (NL) type. Based on these results, we propose that IPHASX J210205+471015 is a classical nova shell observed around a CV-NL system in quiescence.
136 - G. Subebekova 2020
We obtained photometric observations of the nova-like cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to model the light curves of binary systems. New time-resolved optical spectroscopic observations of RW Tri were also obtained to study the properties of emission features produced by the system. The usual interpretation of the single-peaked emission lines in nova-like systems is related to the bi-conical wind from the accretion discs inner part. However, we found that the Halpha emission profile is comprised of two components with different widths. We argue that the narrow component originates from the irradiated surface of the secondary, while the broader components source is an extended, low-velocity region in the outskirts of the accretion disc, located opposite to the collision point of the accretion stream and the disc. It appears to be a common feature for long-period nova-like systems -- a point we discuss.
We present a re-analysis of the H$alpha$ and [OIII] flux data from the only comprehensive study of the luminosity evolution of nova shells, undertaken almost two decades ago. We use newly available distances and extinction values, and include additio nal luminosity data of ancient nova shells. We compare the long-term behaviour with respect to nova speed class and light curve type. We find that, in general, the luminosity as a function of time can be described as consisting of an initial shallow logarithmic decline or constant behaviour, followed by a logarithmic main decline phase, with a possible return to a shallow decline or constancy at very late stages. The luminosity evolution in the first two phases is likely to be dominated by the expansion of the shell and the corresponding changes in volume and density, while for the older nova shells, the interaction with the interstellar medium comes into play. The slope of the main decline is very similar for almost all groups for a given emission line, but it is significantly steeper for [OIII], compared to H$alpha$, which we attribute to the more efficient cooling provided by the forbidden lines. The recurrent novae are among the notable exceptions, along with the plateau light curve type novae and the nova V838 Her. We speculate that this is due to the presence of denser material, possibly in the form of remnants from previous nova eruptions, or of planetary nebulae, As a by-product of our study, we revised the identification of all novae included in our investigation with sources in the Gaia Data Release 2 catalogue.
The analysis of 14 periodograms of EZ Lyn for the data spaced over 565 d in 2012--2014 (2-3.5 yr after 2010 outburst) yielded the existence of the stable signals around 100 c/d and three signals around 310 c/d, 338 c/d and 368 c/d (the corresponding periods are 864 s, 279 s, 256 s and 235 s). We interpret them as independent non-radial pulsations of the white dwarf in EZ Lyn, but a possibility that a linear combination of frequency at 100 c/d and harmonic of orbital period could produce the frequency at 368 c/d also cannot be excluded. The signal at 100 c/d was detected during the first stay in the instability strip as a transient one. The period at 338 c/d, is a known non-radial pulsation EZ Lyn entered the instability strip after the 2010 outburst. We detected the signals around 310 c/d and 368 c/d for the first time. We applied the two-dimensional least absolute shrinkage and selection operator (Lasso) analysis for the first time to explore the behavior of these signals on the scale of hours for nightly runs of observations having duration of 6-12 hr. The Lasso analysis revealed the simultaneous existence of all three frequencies (310 c/d, 338 c/d and 368 c/d) for majority of nights of observations, but with variable amplitudes and variable drifts of frequencies by 2-6 percents on a time scale of ~5-7 hr. The largest drift we detected corresponded to 17.5 s in period in ~5 hours.
We present a complete dynamical study of the intermediate polar and dwarf nova cataclysmic variable GK Per (Nova Persei 1901) based on a multi-site optical spectroscopy and $R$-band photometry campaign. The radial velocity curve of the evolved donor star has a semi-amplitude $K_2=126.4 pm 0.9 , mathrm{km},mathrm{s}^{-1}$ and an orbital period $P=1.996872 pm 0.000009 , mathrm{d}$. We refine the projected rotational velocity of the donor star to $v_mathrm{rot} sin i = 52 pm 2 , mathrm{km},mathrm{s}^{-1}$ which, together with $K_2$, provides a donor star to white dwarf mass ratio $q=M_2/M_1=0.38 pm 0.03$. We also determine the orbital inclination of the system by modelling the phase-folded ellipsoidal light curve and obtain $i=67^{circ} pm 5^{circ}$. The resulting dynamical masses are $M_{1}=1.03^{+0.16}_{-0.11} , mathrm{M}_{odot}$ and $M_2 = 0.39^{+0.07}_{-0.06} , mathrm{M}_{odot}$ at $68$ per cent confidence level. The white dwarf dynamical mass is compared with estimates obtained by modelling the decline light curve of the $1901$ nova event and X-ray spectroscopy. The best matching mass estimates come from the nova light curve models and an X-ray data analysis that uses the ratio between the Alfven radius in quiescence and during dwarf nova outburst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا