ﻻ يوجد ملخص باللغة العربية
Temperature dependence of the X-ray absorption near-edge structure (XANES) spectra at the Pr $L_{3}$- and Tb $L_{3}$-edges was measured for the (Pr$_{1-y}$Tb$_{y})_{0.7}$Ca$_{0.3}$CoO$_{3}$ system, in which a metal-insulator (MI) and spin-state (SS) transition took place simultaneously at a critical temperature $T_{rm MI}$. A small increase in the valence of the terbium ion was found below $T_{rm MI}$, besides the enhancement of the praseodymium valence; the trivalent states, which are stable at room temperature, change to a 3+/4+ ionic mixture at low temperatures. In particular for the $y$=0.2 sample, the average valence determined at 8 K amounts to 3.03+ and 3.25+ for the Tb and Pr ion, respectively. In analogous (Pr$_{1-y}$RE$_{y})_{0.7}$Ca$_{0.3}$CoO$_{3}$ samples (RE=Sm and Eu), in which the MI-SS transition also took place, no valence shift of the RE ion was detected in the XANES spectra at the RE ion $L_{3}$-edge. The role of the substituted RE ion for the Pr-site on the MI-SS transition is discussed.
The magnetic, electric and thermal properties of the ($Ln_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ perovskites ($Ln$~=~Pr, Nd) were investigated down to very low temperatures. The main attention was given to a peculiar metal-insulator transition, whic
The family of hole-doped Pr-based perovskite cobaltites, Pr$_{0.5}$Ca$_{0.5}$CoO$_{3}$ and (Pr$_{1-y}$RE$_{y}$)$_{0.3}$Ca$_{0.7}$CoO$_{3}$ (where RE is rare earth) has recently been found to exhibit simultaneous metal-insulator, spin-state, and valen
The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie
The structural and magnetic properties of two mixed-valence cobaltites with formal population of 0.30 Co$^{4+}$ ions per f.u., (Pr$_{1-y}$Y$_{y}$)$_{0.7}$Ca$_{0.3}$CoO$_3$ ($y=0$ and 0.15), have been studied down to very low temperatures by means of
We have performed an ab initio study of the thermodynamical properties of rare-earth-magnesium intermetallic compounds MgRE (RE=Y, Dy, Pr, Tb) with CsCl-type B2-type structures. The calculations have been carried out the density functional theory and