ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the atomic mass surface beyond the proton drip line via a-decay measurements of the s1/2 ground state of 165Re and the h11/2 isomer in 161Ta

119   0   0.0 ( 0 )
 نشر من قبل David O'Donnell
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The a-decay chains originating from the s1/2 and h11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of a radioactivities have been correlated with 173Aum leading to a measurement of the a decay of 161Tam. It has been found that the known a decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt g rays feeding the ground state of 173Au. This prompt radiation was used to aid the study of the a-decay chain originating from the s1/2 state in 173Au. Three generations of a decays have been correlated with this state leading to the observation of a previously unreported activity which is assigned as the decay of 165Reg. This work also reports the excitation energy of an a-decaying isomer in 161Ta and the Q-value of the decay of 161Tag.



قيم البحث

اقرأ أيضاً

First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncerta inties of about $7cdot 10^{-8}$, nine of them for the first time. Four nuclides ($^{144, 145}$Ho and $^{147, 148}$Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies.
We report on the observation of excited states in the neutron-deficient phosphorus isotopes $^{26,27,28}$P via in-beam gamma-ray spectroscopy with both high-efficiency and high-resolution detector arrays. In $^{26}$P, a previously-unobserved level ha s been identified at 244(3) keV, two new measurements of the astrophysically-important 3/2$^+$ resonance in $^{27}$P have been performed, gamma decays have been assigned to the proton-unbound levels at 2216 keV and 2483 keV in $^{28}$P, and the gamma-ray lineshape method has been used to make the first determination of the lifetimes of the two lowest-lying excited states in $^{28}$P. The expected Thomas-Ehrman shifts were calculated and applied to levels in the mirror nuclei. The resulting level energies from this procedure were then compared with the energies of known states in $^{26,27,28}$P.
142 - P. R. Fraser , K. Amos , L. Canton 2017
In a previous letter (Phys. Rev. Lett. 96, 072502 (2006)), the multi-channel algebraic scattering (MCAS) technique was used to calculate spectral properties for proton-unstable $^{15}$F and its mirror, $^{15}$C. MCAS achieved a close match to the the n-new data for $p+^{14}$O elastic scattering and predicted several unusually narrow resonances at higher energies. Subsequently, such narrow resonance states were found. New cross section data has been published characterising the shape of the $J^pi =frac{1}{2}^-$ resonance. Herein we update that first MCAS analysis and its predictions. We also study the spectra of the set of mass-15 isobars, ${}^{15}$C, ${}^{15}$N, ${}^{15}$O, and ${}^{15}$F, using the MCAS method and seeking a consistent Hamiltonian for clusterisation with a neutron and a proton, separately, coupled to core nuclei ${}^{14}$C and ${}^{14}$O.
Properties of particle-unstable nuclei lying beyond the proton drip line can be ascertained by considering those (usually known) properties of its mirror neutron-rich system. We have used a multi-channel algebraic scattering theory to map the known p roperties of the neutron-${}^{14}$C system to those of the proton-${}^{14}$O one from which we deduce that the particle-unstable ${}^{15}$F will have a spectrum of two low lying broad resonances of positive parity and, at higher excitation, three narrow negative parity ones. A key feature is to use coupling to Pauli-hindered states in the target.
We report the first observation of the 2$^+$ isomer in $^{52}$Co, produced in the $beta$ decay of the 0$^+$, $^{52}$Ni ground state. We have observed three $gamma$-rays at 849, 1910, and 5185 keV characterizing the $beta$ de-excitation of the isomer. We have measured a half-life of 102(6) ms for the isomeric state. The Fermi and Gamow-Teller transition strengths for the $beta$ decay of $^{52m}$Co to $^{52}$Fe have been determined. We also add new information on the $beta$ decay of the 6$^+$, $^{52}$Co ground state, for which we have measured a half-life of 112(3) ms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا