ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge density wave fluctuations, heavy electrons, and superconductivity in KNi$_2$S$_2$

135   0   0.0 ( 0 )
 نشر من قبل James Neilson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the complexities of electronic and magnetic ground states in solids is one of the main goals of solid-state physics. Materials with the canonical ThCr$_2$Si$_2$-type structure have proved particularly fruitful in this regards, as they exhibit a wide range of technologically advantageous physical properties described by many-body physics, including high-temperature superconductivity and heavy fermion behavior. Here, using high-resolution synchrotron X-ray diffraction and time-of-flight neutron scattering, we show that the isostructural mixed valence compound, KNi$_2$S$_2$, displays a number of highly unusual structural transitions, most notably the presence of charge density wave fluctuations that disappear on cooling. This behavior occurs without magnetic or charge order, in contrast to expectations based on all other known materials. Furthermore, the low-temperature electronic state of KNi$_2$S$_2$ is found to exhibit many characteristics of heavy-fermion behavior, including a heavy electron state ($m^*/m_e sim$ 24), with a negative coefficient of thermal expansion, and superconductivity below $T_c$ = 0.46(2) K. In the potassium nickel sulfide, these behaviors arise in the absence of localized magnetism, and instead appear to originate in proximity to charge order.



قيم البحث

اقرأ أيضاً

108 - Y. Huang , H. P. Wang , R. Y. Chen 2014
We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the formation of a large energy gap and removes most part of the Fermi surfaces. But the compound remains metallic with residual itinerant carriers. Below 42 K, another density wave phase transition with smaller energy gap scale occurs and drives the compound into semiconducting ground state. These experiments thus enable us to shed light on the complex electronic structure in the titanium oxypnictides.
258 - T. Lin , L. Y. Shi , Z. X. Wang 2020
The parkerite-type ternary chalcogenide Bi$_2$Rh$_3$Se$_2$ was discovered to be a charge density wave (CDW) superconductor. However, there was a debate on whether the observed phase transition at 240 K could be attributed to the formation of CDW orde r. To address the issue, we performed optical spectroscopy and ultrafast pump-probe measurements on single crystal samples of Bi$_2$Rh$_3$Se$_2$. Our optical conductivity measurement reveals clearly the formation of an energy gap with associated spectral change only at low energies, yielding strong evidence for a CDW phase transition at 240 K. Time resolved pump-probe measurement provides further support for the CDW phase transition. The amplitude and relaxation time of quasiparticles extracted from the photoinduced reflectivity show strong enhancement near transition temperature, yielding further evidence for the CDW energy gap formation. Additionally, a collective mode is identified from the oscillations in the pump-probe time delay at low temperature. This mode, whose frequency decreases gradually at elevated temperature, could be naturally attributed to the amplitude mode of CDW state.
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $ mathbf{k}_1=(0,0.57,0)$. A quasielastic signal is found, whose momentum-transfer dependence is compatible with fluctuations of magnetic moments $muparallelmathbf{a}$, with a sine-wave modulation of wavevector $mathbf{k}_1$ and in-phase moments on the nearest U atoms. Low dimensionality of the magnetic fluctuations, consequence of the ladder structure, is indicated by weak correlations along the direction $mathbf{c}$. These fluctuations saturate below the temperature $T_1^*simeq15$~K, in possible relation with anomalies observed in thermodynamic, electrical-transport and nuclear-magnetic-resonance measurements. The absence or weakness of ferromagnetic fluctuations, in our data collected at temperatures down to 2.1 K and energy transfers from 0.6 to 7.5 meV, is emphasized. These results constitute constraints for models of magnetically-mediated superconductivity in UTe$_2$.
A finite transfer integral $t_a$ orthogonal to the conducting chains of a highly one-dimensional metal gives rise to empty and filled bands that simulate an indirect-gap semiconductor upon formation of a commensurate charge-density-wave (CDW). In con trast to semiconductors such as Ge and Si with bandgaps $sim 1$ eV, the CDW system possesses an indirect gap with a greatly reduced energy scale, enabling moderate laboratory magnetic fields to have a major effect. The consequent variation of the thermodynamic gap with magnetic field due to Zeeman splitting and Landau quantization enables the electronic bandstructure parameters (transfer integrals, Fermi velocity) to be determined accurately. These parameters reveal the orbital quantization limit to be reached at $sim 20$ T in (Per)$_2M$(mnt)$_2$ salts, making them highly unlikely candidates for a recently-proposed cascade of field-induced charge-density wave states.
We have measured the resistivity, optical conductivity, and magnetic susceptibility of LaSb$_2$ to search for clues as to the cause of the extraordinarily large linear magnetoresistance and to explore the properties of the superconducting state. We f ind no evidence in the optical conductivity for the formation of a charge density wave state above 20 K despite the highly layered crystal structure. In addition, only small changes to the optical reflectivity with magnetic field are observed indicating that the MR is due to scattering rate, not charge density, variations with field. Although a superconducting ground state was previously reported below a critical temperature of 0.4 K, we observe, at ambient pressure, a fragile superconducting transition with an onset at 2.5 K. In crystalline samples, we find a high degree of variability with a minority of samples displaying a full Meissner fraction below 0.2 K and fluctuations apparent up to 2.5 K. The application of pressure stabilizes the superconducting transition and reduces the anisotropy of the superconducting phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا