ﻻ يوجد ملخص باللغة العربية
We want to characterize the properties of the cold dust clumps in the Carina Nebula Complex (CNC), which shows a very high level of massive star feedback. We derive the Clump Mass Function (ClMF), explore the reliability of different clump extraction algorithms, and investigate the influence of the temperatures within the clouds on the resulting shape of the ClMF. We analyze a 1.25x1.25 deg^2 wide-field sub-mm map obtained with LABOCA (APEX), which provides the first spatially complete survey of the clouds in the CNC. We use the three clump-finding algorithms CLUMPFIND (CF), GAUSSCLUMPS (GC) and SExtractor (SE) to identify individual clumps and determine their total fluxes. In addition to assuming a common `typical temperature for all clouds, we also employ an empirical relation between cloud column densities and temperature to determine an estimate of the individual clump temperatures, and use this to determine individual clump masses. While the ClMF based on the CF extraction is very well described by a power-law, the ClMFs based on GC and SE are better represented by a log-normal distribution. We also find that the use of individual clump temperatures leads to a shallower ClMF slope than the assumption of a common temperature (e.g. 20 K) of all clumps. The power-law of dN/dM propto M^-1.95 we find for the CF sample is in good agreement with ClMF slopes found in previous studies of other regions. The dependence of the ClMF shape (power-law vs. log-normal distribution) on the employed extraction method suggests that observational determinations of the ClMF shape yields only very limited information about the true structure of the cloud. Interpretations of log-normal ClMF shape as a signature of turbulent pre-stellar clouds vs. power-law ClMFs as a signature of star-forming clouds may be taken with caution for a single extraction algorithm without additional information.
Herein, we present results from observations of the 12CO (J=1-0), 13CO (J=1-0), and 12CO (J=2-1) emission lines toward the Carina nebula complex (CNC) obtained with the Mopra and NANTEN2 telescopes. We focused on massive-star-forming regions associat
The Great Nebula in Carina is a superb location in which to study the physics of violent massive star-formation and the resulting feedback effects, including cloud dispersal and triggered star-formation. In order to reveal the cold dusty clouds in th
Linear polarization maps of the Carina Nebula were obtained at 250, 350, and 500 $mu$m during the 2012 flight of the BLASTPol balloon-borne telescope. These measurements are combined with Planck 850 $mu$m data in order to produce a submillimeter spec
The Carina Nebula represents one of the largest and most active star forming regions known in our Galaxy with numerous very massive stars.Our recently obtained Herschel PACS & SPIRE far-infrared maps cover the full area (about 8.7 deg^2) of the Carin
We present a novel infrared spectral energy distribution (SED) modeling methodology that uses likelihood-based weighting of the model fitting results to construct probabilistic H-R diagrams (pHRD) for X-ray identified, intermediate-mass (2-8 $M_{odot