ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth and physical property study of single nanowire (diameter ~ 45nm) of half doped Manganite

76   0   0.0 ( 0 )
 نشر من قبل Subarna Datta
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report here the growth and characterization of functional oxide nanowire of hole doped manganite of La0.5Sr0.5MnO3 (LSMO). We also report four probe electrical resistance measurement of single nanowire of LSMO (diameter ~ 45nm) using FIB fabricated electrodes. The wires were fabricated by hydrothermal method using autoclave at a temperature of 270 oC. The elemental analysis and physical property like electrical resistivity were studied at individual nanowire level. The quantitative determination of Mn valency and elemental mapping of constituent elements was done by using Electron Energy Loss Spectroscopy (EELS) in the Scanning Transmission Electron Microscopy (STEM) mode. We addressed the important issue of whether as a result of size reduction the nanowires can retain the desired composition, structure and physical properties. The nanowires used were found to have a ferromagnetic transition (TC) at around 325 K which is very close to the bulk value of around 330 K found in single crystal of the same composition confirming that the functional behavior is likely to be retained even after size reduction of the nanowires to a diameter of 45 nm. The electrical resistivity shows insulating behavior within the temperature range measured, which is very much similar to the bulk system.

قيم البحث

اقرأ أيضاً

In this paper we report the structural and property (magnetic and electrical transport) measurements of nanocrystals of half-doped $mathrm{La_{0.5}Ca_{0.5}MnO_3}$(LCMO) synthesized by chemical route, having particle size down to an average diameter o f 15nm. It was observed that the size reduction leads to change in crystal structure and the room temperature structure is arrested so that the structure does not evolve on cooling unlike bulk samples. The structural change mainly affects the orthorhombic distortion of the lattice. By making comparison with observed crystal structure data under hydrostatic pressure it is suggested that the change in the crystal structure of the nanocrystals occurs due to an effective hydrostatic pressure created by the surface pressure on size reduction. This not only changes the structure but also causes the room temperature structure to freeze-in. The size reduction also does not allow the long supercell modulation needed for the Charge Ordering, characteristic of this half-doped manganite, to set-in. The magnetic and transport measurements also show that the Charge Ordering (CO) does not occur when the size is reduced below a critical size. Instead, the nanocrystals show ferromagnetic ordering down to the lowest temperatures along with metallic type conductivity. Our investigation establishes a structural basis for the destabilization of CO state observed in half-doped manganite nanocrystals.
328 - Zhao Wang , N. Mingo 2011
We theoretically compute the thermal conductivity of SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. Our results account for the weaker diameter dependence of the thermal conductivity recently observed in Si$_{1-x}$Ge$_x$ nanowires ($x<0.1$), as compared to pure Si nanowires. We also present calculations in the full range of alloy concentrations, $0 leq x leq 1$, which may serve as a basis for comparison with future experiments on high alloy concentration nanowires.
Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concen tration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. However, shrinkage and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.
87 - L. Zhao , Z. Hu , H. Guo 2021
We report on the synthesis and physical properties of cm-sized CoGeO$_3$ single crystals grown in a high pressure mirror furnace at pressures of 80~bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly ani sotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with T$_N$~$sim$~33.5~K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions which reveals the presence of sizable orbital moments in CoGeO$_3$.
286 - D. S. Wu , Z. Y. Mi , Y. J. Li 2019
We report single crystal growth of CoSi, which has recently been recognized as a new type of topological semimetal hosting fourfold and sixfold degenerate nodes. The Shubnikov-de Haas quantum oscillation (QO) is observed on our crystals. There are tw o frequencies originating from almost isotropic bulk electron Fermi surfaces, in accordance with band structure calculations. The effective mass, scattering rate, and QO phase difference of the two frequencies are extracted and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا