ﻻ يوجد ملخص باللغة العربية
The Humbert-Bessel are multi-index functions with various applications in electromagnetism. New families of functions sharing some similarities with Bessel functions are often introduced in the mathematical literature, but at a closer analysis they are not new, in the strict sense of the word, and are shown to be expressible in terms of already discussed forms. This is indeed the case of the re-modified Bessel functions, whose properties have been analyzed within the context of coincidence problems in probability theory. In this paper we show that these functions are particular cases of the Humbert-Bessel ones.
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.
In this paper we consider an asymptotic question in the theory of the Gaussian Unitary Ensemble of random matrices. In the bulk scaling limit, the probability that there are no eigenvalues in the interval (0,2s) is given by P_s=det(I-K_s), where K_s
Using a deformed calculus based on the Dunkl operator, two new deformations of Bessel functions are proposed. Some properties i.e. generating function, differential-difference equation, recursive relations, Poisson formula... are also given with deta
We present an extension of some results of higher order calculus of variations and optimal control to generalized functions. The framework is the category of generalized smooth functions, which includes Schwartz distributions, while sharing many nonl
We give combinatorial proofs of $q$-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitzs identity, a new proof of the $q$-Frobenius identity of Garsia and Remmel and of Ehrenborgs Hankel $q$-Stirling de