ﻻ يوجد ملخص باللغة العربية
We use scanning tunneling microscopy to map the surface structure, nanoscale electronic inhomogeneity, and vitreous vortex phase in the hole-doped superconductor Sr$_{0.75}$K$_{0.25}$Fe$_2$As$_2$ with $T_c$=32 K. We find the low-$T$ cleaved surface is dominated by a half-Sr/K termination with $1times 2$ ordering and ubiquitous superconducting gap, while patches of gapless, unreconstructed As termination appear rarely. The superconducting gap varies by $sigma/bar{Delta}$=16% on a $sim$3 nm length scale, with average $2bar{Delta}/k_B T_c=3.6$ in the weak coupling limit. The vortex core size provides a measure of the superconducting coherence length $xi$=2.3 nm. We quantify the vortex lattice correlation length at 9 T in comparison to several iron-based superconductors. The comparison leads us to suggest the importance of dopant size mismatch as a cause of dopant clustering, electronic inhomogeneity, and strong vortex pinning.
The pinning of quantized flux lines, or vortices, in the mixed state is used to quantify the effect of impurities in iron-based superconductors (IBS). Disorder at two length scales is relevant in these materials. Strong flux pinning resulting from nm
We study topological vortex phases in iron-based superconductors. Besides the previously known vortex end Majorana zero modes (MZMs) phase stemming from the existence of a three dimensional (3D) strong topological insulator state, we show that there
A vortex in an s-wave superconductor with a surface Dirac cone can trap a Majorana bound state with zero energy leading to a zero-bias peak (ZBP) of tunneling conductance. The iron-based superconductor FeTe$_x$Se$_{1-x}$ is one of the material candid
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron in
The vortex of iron-based superconductors is emerging as a promising platform for Majorana zero mode, owing to a magic integration among intrinsic vortex winding, non-trivial band topology, strong electron-electron correlations, high-Tc superconductiv