ترغب بنشر مسار تعليمي؟ اضغط هنا

Kerr effect as evidence of gyrotropic order in the cuprates

53   0   0.0 ( 0 )
 نشر من قبل Srinivas Raghu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kerr effect can arise in a time-reversal invariant dissipative medium that is gyrotropic, i.e. one that breaks inversion ($mathcal I$) and all mirror symmetries. Examples of such systems include electron analogs of cholesteric liquid crystals, and their descendants, such as systems with chiral charge ordering. We present arguments that the striking Kerr onset seen in the pseudogap phase of a large number of cuprate high temperature superconductors is evidence of chiral charge ordering. We discuss additional experimental consequences of a phase transition to a gyrotropic state, including the appearance of a zero field Nernst effect.

قيم البحث

اقرأ أيضاً

Recent analysis has confirmed earlier general arguments that the Kerr response vanishes in any time-reversal invariant system which satisfies the Onsager relations. Thus, the widely cited relation between natural optical activity (gyrotropy) and the Kerr response, employed in Hosur textit{et al}, Phys. Rev. B textbf{87}, 115116 (2013), is incorrect. However, there is increasingly clear experimental evidence that, as argued in our paper, the onset of an observable Kerr-signal in the cuprates reflects point-group symmetry rather than time-reversal symmetry breaking.
38 - C. M. Varma 2013
The optical effects due to the loop-current order parameter in under-doped cuprates are studied in order to understand the recent observation of unusual birefringence in electromagnetic propagation in under-doped cuprates. It is shown why birefringen ce occurs even in multiple domains of order with size of domains much smaller than the wave-length and in twinned samples. Not only is there a rotation of polarization of incident light but also a rotation of the principal optical axis from the crystalline axes. Both are calculated in relative agreement with experiments in terms of the same parameters. The magnitude of the effect is orders of magnitude larger than the unusual Kerr effect observed in under-doped cuprates earlier. The new observations, including their comparison with the Kerr effect, test the symmetry of the proposed order decisively and confirm the conclusions from polarized neutron scattering.
High resolution polar Kerr effect (PKE) measurements were performed on La1.875Ba0.125Cuo4 single crystals revealing that a finite Kerr signal is measured below an onset temperature-T_K that coincides with charge ordering transition temperature T_{CO} . We further show that the sign of the Kerr signal cannot be trained with magnetic field, is found to be the same of opposite sides of the same crystal, and is odd with respect to strain in the diagonal direction of the unit cell. These observations are consistent with a chiral gyrotropic order above T_c for La1.875Ba0.125Cuo4; similarities to other cuprates suggest that it is a universal property in the pseudogap regime.
119 - Chandra M. Varma 2020
The conjecture made recently by the group at Sherbrooke, that their observed anomalous thermal Hall effect in the pseudo-gap phase in the cuprates is due to phonons, is supported on the basis of an earlier result that the observed loop-current order in this phase must induce lattice distortions which are linear in the order parameter and an applied magnetic field. The lowered symmetry of the crystal depends on the direction of the field. A consequence is that the elastic constants change proportional to the field and are shown to induce axial thermal transport with the same symmetries as the Lorentz force enforces for the normal electronic Hall effect. Direct measurements of elastic constants in a magnetic field are suggested to verify the quantitative aspects of the results.
The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr$_2$RuO$_4$ using magne to-optic probes, we embarked on a systematic study of several other of these candidate systems. The primary instrument for our studies is the Sagnac magneto-optic interferometer, which we recently developed. This instrument can measure magneto-optic Faraday or Kerr effects with an unprecedented sensitivity of 10 nanoradians at temperatures as low as 100 mK. In this paper we review our recent studies of TRSB in several systems, emphasizing the study of the pseudogap state of high temperature superconductors and the inverse proximity effect in superconductor/ferromagnet proximity structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا