ترغب بنشر مسار تعليمي؟ اضغط هنا

Categorified invariants and the braid group

182   0   0.0 ( 0 )
 نشر من قبل J. Elisenda Grigsby
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate two categorified braid conjugacy class invariants, one coming from Khovanov homology and the other from Heegaard Floer homology. We prove that each yields a solution to the word problem but not the conjugacy problem in the braid group.



قيم البحث

اقرأ أيضاً

We study Artin-Tits braid groups $mathbb{B}_W$ of type ADE via the action of $mathbb{B}_W$ on the homotopy category $mathcal{K}$ of graded projective zigzag modules (which categorifies the action of the Weyl group $W$ on the root lattice). Following Brav-Thomas, we define a metric on $mathbb{B}_W$ induced by the canonical $t$-structure on $mathcal{K}$, and prove that this metric on $mathbb{B}_W$ agrees with the word-length metric in the canonical generators of the standard positive monoid $mathbb{B}_W^+$ of the braid group. We also define, for each choice of a Coxeter element $c$ in $W$, a baric structure on $mathcal{K}$. We use these baric structures to define metrics on the braid group, and we identify these metrics with the word-length metrics in the Birman-Ko-Lee/Bessis dual generators of the associated dual positive monoid $mathbb{B}_{W.c}^vee$. As consequences, we give new proofs that the standard and dual positive monoids inject into the group, give linear-algebraic solutions to the membership problem in the standard and dual positive monoids, and provide new proofs of the faithfulness of the action of $mathbb{B}_W$ on $mathcal{K}$. Finally, we use the compatibility of the baric and $t$-structures on $mathcal{K}$ to prove a conjecture of Digne and Gobet regarding the canonical word-length of the dual simple generators of ADE braid groups.
86 - Ryosuke Kodera 2018
We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside $hat{mathfrak{gl}}_N$.
We introduce shadow structures for singular knot theory. Precisely, we define emph{two} invariants of singular knots and links. First, we introduce a notion of action of a singquandle on a set to define a shadow counting invariant of singular links w hich generalize the classical shadow colorings of knots by quandles. We then define a shadow polynomial invariant for shadow structures. Lastly, we enhance the shadow counting invariant by combining both the shadow counting invariant and the shadow polynomial invariant. Explicit examples of computations are given.
We generalize the notion of the quandle polynomial to the case of singquandles. We show that the singquandle polynomial is an invariant of finite singquandles. We also construct a singular link invariant from the singquandle polynomial and show that this new singular link invariant generalizes the singquandle counting invariant. In particular, using the new polynomial invariant, we can distinguish singular links with the same singquandle counting invariant.
164 - Usman Ali 2008
In this article we describe the summit sets in B_3, the smallest element in a summit set and we compute the Hilbert series corresponding to conjugacy classes.The results will be related to Birman-Menesco classification of knots with braid index three or less than three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا