ﻻ يوجد ملخص باللغة العربية
We develop a novel parallel resampling algorithm for fully parallelized particle filters, which is designed with GPUs (graphics processing units) or similar parallel computing devices in mind. With our new algorithm, a full cycle of particle filtering (computing the value of the likelihood for each particle, constructing the cumulative distribution function (CDF) for resampling, resampling the particles with the CDF, and propagating new particles for the next cycle) can be executed in a massively and completely parallel manner. One of the advantages of our algorithm is that every single numerical computation or memory access related to the particle filtering is executed solely inside the GPU in parallel, and no data transfer between the GPUs device memory and the CPUs host memory occurs unless for further processing, so that it can circumvent the limited memory bandwidth between the GPU and the CPU. To demonstrate the advantage of our parallel algorithm, we conducted a Monte Carlo experiment in which we apply the parallel algorithm as well as conventional sequential algorithms for estimation of a simple state space model via particle learning, and compare them in terms of execution time. The results show that the parallel algorithm is far superior to the sequential algorithm.
Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of $N$ interacting auxiliary chains targeting temper
Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better explora
We explore an online learning reinforcement learning (RL) paradigm for optimizing parallel particle tracing performance in distributed-memory systems. Our method combines three novel components: (1) a workload donation model, (2) a high-order workloa
In recent years, mesh subdivision---the process of forging smooth free-form surfaces from coarse polygonal meshes---has become an indispensable production instrument. Although subdivision performance is crucial during simulation, animation and render
Bayesian Additive Regression Trees (BART) is a Bayesian approach to flexible non-linear regression which has been shown to be competitive with the best modern predictive methods such as those based on bagging and boosting. BART offers some advantages