ترغب بنشر مسار تعليمي؟ اضغط هنا

The baryon budget on the galaxy group/cluster boundary

167   0   0.0 ( 0 )
 نشر من قبل Alastair Sanderson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the hot gas and stellar content of 5 optically-selected poor galaxy clusters, including a full accounting of the contribution from intracluster light (ICL) and a combined hot gas and hydrostatic X-ray mass analysis with XMM observations. We find weighted mean stellar (including ICL), gas and total baryon mass fractions within r500 of 0.026+/-0.003, 0.070+/-0.005 and 0.096+/-0.006, respectively, at a corresponding weighted mean M500 of (1.08_{-0.18}^{+0.21}) x 10^14 Msun. Even when accounting for the intracluster stars, 4 out of 5 clusters show evidence for a substantial baryon deficit within r500, with baryon fractions (f_bary) between 50+/-6 to 59+/-8 per cent of the Universal mean level (i.e. Omega_b / Omega_m); the remaining cluster having f_bary = 75+/-11 per cent. For the 3 clusters where we can trace the hot halo to r500 we find no evidence for a steepening of the gas density profile in the outskirts with respect to a power law, as seen in more massive clusters. We find that in all cases, the X-ray mass measurements are larger than those originally published on the basis of the galaxy velocity dispersion (sigma) and an assumed sigma-M500 relation, by a factor of 1.7-5.7. Despite these increased masses, the stellar fractions (in the range 0.016-0.034, within r500) remain consistent with the trend with mass published by Gonzalez, Zaritsky & Zabludoff (2007), from which our sample is drawn.

قيم البحث

اقرأ أيضاً

61 - D. Eckert , S. Molendi , M. Owers 2014
Structure formation in the current Universe operates through the accretion of group-scale systems onto massive clusters. The detection and study of such accreting systems is crucial to understand the build-up of the most massive virialized structures we see today. We report the discovery with XMM-Newton of an irregular X-ray substructure in the outskirts of the massive galaxy cluster Abell 2142. The tip of the X-ray emission coincides with a concentration of galaxies. The bulk of the X-ray emission of this substructure appears to be lagging behind the galaxies and extends over a projected scale of at least 800 kpc. The temperature of the gas in this region is 1.4 keV, which is a factor of ~4 lower than the surrounding medium and is typical of the virialized plasma of a galaxy group with a mass of a few 10^13M_sun. For this reason, we interpret this structure as a galaxy group in the process of being accreted onto the main dark-matter halo. The X-ray structure trailing behind the group is due to gas stripped from its original dark-matter halo as it moves through the intracluster medium (ICM). This is the longest X-ray trail reported to date. For an infall velocity of ~1,200 km s-1 we estimate that the stripped gas has been surviving in the presence of the hot ICM for at least 600 Myr, which exceeds the Spitzer conduction timescale in the medium by a factor of >~400. Such a strong suppression of conductivity is likely related to a tangled magnetic field with small coherence length and to plasma microinstabilities. The long survival time of the low-entropy intragroup medium suggests that the infalling material can eventually settle within the core of the main cluster.
We present a $Chandra$ study of the hot intragroup medium (hIGM) of the galaxy group NCG2563. The $Chandra$ mosaic observations, with a total exposure time of ~430 ks, allow the gas density to be detected beyond $R_{200}$ and the gas temperature out to 0.75 $R_{200}$. This represents the first observational measurement of the physical properties of a poor groups beyond $R_{500}$. By capitalizing on the exquisite spatial resolution of $Chandra$ that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas (clumpiness), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2 - 3 at $R_{200}$. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.
In recent years, the availability of large, complete cluster samples has enabled numerous cosmological parameter inference analyses using cluster number counts. These have provided constraints on the cosmic matter density $Omega_m$ and the amplitude of matter density fluctuations $sigma_8$ alternative to those obtained from other standard probes. However, systematics uncertainties, such as the mass calibration bias and selection effects, may still significantly affect these data analyses. Hence, it is timely to explore other proxies of galaxy cluster cosmology that can provide cosmological constraints complementary to those obtained from cluster number counts. Here, we use measurements of the cluster sparsity from weak lensing mass estimates of the LC$^2$-{it single} and HSC-XXL cluster catalogs to infer constraints on a flat $Lambda$CDM model. The cluster sparsity has the advantage of being insensitive to selection and mass calibration bias. On the other hand, it primarily constrains a degenerate combination of $Omega_m$ and $sigma_8$ (along approximately constant curves of $S_8=sigma_8sqrt{Omega_m/0.3}$), and to less extent the reduced Hubble parameter $h$. Hence, in order to break the internal parameter degeneracies we perform a combined likelihood analysis of cluster sparsities with cluster gas mass fraction measurements and BAO data. We find marginal constraints that are competitive with those from other standard cosmic probes: $Omega_m=0.316pm 0.013$, $sigma_8=0.757pm 0.067$ (corresponding to $S_8=0.776pm 0.064$) and $h=0.696pm 0.017$ at $1sigma$. Moreover, assuming a conservative Gaussian prior on the mass bias of gas mass fraction data, we find a lower limit on the gas depletion factor $Y_{b,500c}gtrsim 0.89$.
The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmolog ical parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck LCDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.
Current models of galaxy formation predict that galaxy pairs of comparable magnitudes should become increasingly rare with decreasing luminosity. This seems at odds with the relatively high frequency of pairings among dwarf galaxies in the Local Grou p. We use literature data to show that ~30% of all satellites of the Milky Way and Andromeda galaxies brighter than M_V=-8 are found in likely physical pairs of comparable luminosity. Besides the previously recognised pairings of the Magellanic Clouds and of NGC 147/NGC 185, other candidate pairs include the Ursa Minor and Draco dwarf spheroidals, as well as the And I/And III satellites of M31. These pairs are much closer than expected by chance if the radial and angular distributions of satellites were uncorrelated; in addition, they have very similar line-of-sight velocities and luminosities that differ by less than three magnitudes. In contrast, the same criteria pair fewer than 4% of satellites in N-body/semi-analytic models that match the radial distribution and luminosity function of Local Group satellites. If confirmed in studies of larger samples, the high frequency of dwarf galaxy pairings may provide interesting clues to the formation of faint galaxies in the current cosmological paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا