ﻻ يوجد ملخص باللغة العربية
We argue that the entanglement entropy for a very small subsystem obeys a property which is analogous to the first law of thermodynamics when we excite the system. In relativistic setups, its effective temperature is proportional to the inverse of the subsystem size. This provides a universal relationship between the energy and the amount of quantum information. We derive the results using holography and confirm them in two dimensional field theories. We will also comment on an example with negative specific heat and suggest a connection between the second law of thermodynamics and the strong subadditivity of entanglement entropy.
We analyze the holographic entanglement entropy in a soliton background with Wilson lines and derive a relation analogous to the first law of thermodynamics. The confinement/deconfinement phase transition occurs due to the competition of two minimal
In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational tria
The partial entanglement entropy (PEE) $s_{mathcal{A}}(mathcal{A}_i)$ characterizes how much the subset $mathcal{A}_i$ of $mathcal{A}$ contribute to the entanglement entropy $S_{mathcal{A}}$. We find one additional physical requirement for $s_{mathca
We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study and then generalise
We would like to put the area law -- believed to by obeyed by entanglement entropies in the ground state of a local field theory -- to scrutiny in the presence of non-perturbative effects. We study instanton corrections to entanglement entropy in var