ﻻ يوجد ملخص باللغة العربية
We investigate the prospects of observing a neutral Higgs boson decaying into a pair of $W$ bosons (one real and the other virtual), followed by the $W$ decays into $qq ell u$ or $jjell u$ at the CERN Large Hadron Collider (LHC). Assuming that the missing transverse energy comes solely from the neutrino in $W$ decay, we can reconstruct the $W$ masses and then the Higgs mass. At the LHC with a center of mass energy ($sqrt{s}$) of 8 TeV and an integrated luminosity ($L$) of 25 fb$^{-1}$, we can potentially establish a $6sigma$ signal. A $5sigma$ discovery of $H to WW^* to jjell u$ for $sqrt{s} = 14$ TeV can be achieved with $L = $ 6 fb$^{-1}$. The discovery of $H to WW$ implies that the recently discovered new boson is a CP-even scalar if its spin is zero. In addition, this channel will provide a good opportunity to study the $HWW$ coupling.
Vector-boson pair production is an important background for Higgs boson and new physics searches at the Large Hadron Collider LHC. We have calculated the loop-induced gluon-fusion process gg -> WW -> leptons, allowing for arbitrary invariant masses o
We analyze the prospects for resonant di-Higgs production searches at the LHC in the $bbar{b} W^+ W^-$ ($W^{+} to ell^{+} u_{ell}$, $W^{-} to ell^{-} bar{ u}_{ell}$) channel, as a probe of the nature of the electroweak phase transition in Higgs port
At the Large Hadron Collider (LHC), both the ATLAS and CMS Collaborations have been searching for light charged Higgs bosons via top (anti)quark production and decays channels, like $ppto t bar{t}$ with one top (anti)quark decaying into a charged Hig
The measurement of the Higgs coupling to W bosons is an important program at the international linear collider (ILC) to search for the anomaly in the coupling to the gauge bosons. We study the sensitivity of ILC to the Higgs anomalous coupling to W b
We investigate the Beyond Standard Model discovery potential in the framework of the Effective Field Theory (EFT) for the same-sign $WW$ scattering process in purely leptonic $W$ decay modes at the High-Luminosity and High-Energy phases of the Large