ترغب بنشر مسار تعليمي؟ اضغط هنا

Every coprime linear group admits a base of size two

209   0   0.0 ( 0 )
 نشر من قبل Zolt\\'an Halasi
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let G be a linear group acting on the finite vector space V and assume that (|G|,|V|)=1. In this paper we prove that G has a base size at most two and this estimate is sharp. This generalizes and strengthens several former results concerning base sizes of coprime linear groups. As a direct consequence, we answer a question of I. M. Isaacs in the affirmative. Via large orbits this is related to the k(GV) theorem.



قيم البحث

اقرأ أيضاً

Let $V$ be a finite vector space over a finite field of order $q$ and of characteristic $p$. Let $Gleq GL(V)$ be a $p$-solvable completely reducible linear group. Then there exists a base for $G$ on $V$ of size at most $2$ unless $q leq 4$ in which c ase there exists a base of size at most $3$. The first statement extends a recent result of Halasi and Podoski and the second statement generalizes a theorem of Seress. An extension of a theorem of Palfy and Wolf is also given.
Let $G$ be a finite group admitting a coprime automorphism $phi$ of order $n$. Denote by $G_{phi}$ the centralizer of $phi$ in $G$ and by $G_{-phi}$ the set ${ x^{-1}x^{phi}; xin G}$. We prove the following results. 1. If every element from $G_{ph i}cup G_{-phi}$ is contained in a $phi$-invariant subgroup of exponent dividing $e$, then the exponent of $G$ is $(e,n)$-bounded. 2. Suppose that $G_{phi}$ is nilpotent of class $c$. If $x^{e}=1$ for each $x in G_{-phi}$ and any two elements of $G_{-phi}$ are contained in a $phi$-invariant soluble subgroup of derived length $d$, then the exponent of $[G,phi]$ is bounded in terms of $c,d,e,n$.
Building on earlier papers of several authors, we establish that there exists a universal constant $c > 0$ such that the minimal base size $b(G)$ of a primitive permutation group $G$ of degree $n$ satisfies $log |G| / log n leq b(G) < 45 (log |G| / l og n) + c$. This finishes the proof of Pybers base size conjecture. An ingredient of the proof is that for the distinguishing number $d(G)$ (in the sense of Albertson and Collins) of a transitive permutation group $G$ of degree $n > 1$ we have the estimates $sqrt[n]{|G|} < d(G) leq 48 sqrt[n]{|G|}$.
The minimal base size $b(G)$ for a permutation group $G$, is a widely studied topic in the permutation group theory. Z. Halasi and K. Podoski proved that $b(G)leq 2$ for coprime linear groups. Motivated by this result and the probabilistic method use d by T. C. Burness, M. W. Liebeck and A. Shalev, it was asked by L. Pyber that for coprime linear groups $Gleq GL(V)$, whether there exists a constant $c$ such that the probability of that a random $c$-tuple is a base for $G$ tends to 1 as $|V|toinfty$. While the answer to this question is negative in general, it is positive under the additional assumption that $G$ is even primitive as a linear group. In this paper, we show that almost all $11$-tuples are bases for coprime primitive linear groups.
A cycle base of a permutation group is defined to be a maximal set of its pairwise non-conjugate regular cyclic subgroups. It is proved that a cycle base of a permutation group of degree $n$ can be constructed in polynomial time in~$n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا