ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundedness and compactness of operators on the Fock space

234   0   0.0 ( 0 )
 نشر من قبل Kehe Zhu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain sufficient conditions for a densely defined operator on the Fock space to be bounded or compact. Under the boundedness condition we then characterize the compactness of the operator in terms of its Berezin transform.



قيم البحث

اقرأ أيضاً

This paper is devoted to the study of reducing subspaces for multiplication operator $M_phi$ on the Dirichlet space with symbol of finite Blaschke product. The reducing subspaces of $M_phi$ on the Dirichlet space and Bergman space are related. Our st rategy is to use local inverses and Riemann surface to study the reducing subspaces of $M_phi$ on the Bergman space, and we discover a new way to study the Riemann surface for $phi^{-1}circphi$. By this means, we determine the reducing subspaces of $M_phi$ on the Dirichlet space when the order of $phi$ is $5$; $6$; $7$ and answer some questions of Douglas-Putinar-Wang cite{DPW12}.
142 - Brett D. Wick , Shengkun Wu 2020
In this paper, we introduce the Fock space over $mathbb{C}^{infty}$ and obtain an isomorphism between the Fock space over $mathbb{C}^{infty}$ and Bose-Fock space. Based on this isomorphism, we obtain representations of some operators on the Bose-Fock space and answer a question in cite{coburn1985}. As a physical application, we study the Gibbs state.
159 - Guangfu Cao , Ji Li , Minxing Shen 2019
We show that for an entire function $varphi$ belonging to the Fock space ${mathscr F}^2(mathbb{C}^n)$ on the complex Euclidean space $mathbb{C}^n$, the integral operator begin{eqnarray*} S_{varphi}F(z)=int_{mathbb{C}^n} F(w) e^{z cdotbar{w}} varphi(z - bar{w}),dlambda(w), zin mathbb{C}^n, end{eqnarray*} is bounded on ${mathscr F}^2(mathbb{C}^n)$ if and only if there exists a function $min L^{infty}(mathbb{R}^n)$ such that $$ varphi(z)=int_{mathbb{R}^n} m(x)e^{-2left(x-frac{i}{2} z right)cdot left(x-frac{i}{2} z right)} dx, zin mathbb{C}^n. $$ Here $dlambda(w)= pi^{-n}e^{-leftvert wrightvert^2}dw$ is the Gaussian measure on $mathbb C^n$. With this characterization we are able to obtain some fundamental results including the normaility, the algebraic property, spectrum and compactness of this operator $S_varphi$. Moreover, we obtain the reducing subspaces of $S_{varphi}$. In particular, in the case $n=1$, we give a complete solution to an open problem proposed by K. Zhu for the Fock space ${mathscr F}^2(mathbb{C})$ on the complex plane ${mathbb C}$ (Integr. Equ. Oper. Theory {bf 81} (2015), 451--454).
186 - Yiyuan Zhang , Guangfu Cao , Li He 2021
In this paper, we investigate the boundedness of Toeplitz product $T_{f}T_{g}$ and Hankel product $H_{f}^{*} H_{g}$ on Fock-Sobolev space for two polynomials $f$ and $g$ in $z,overline{z}inmathbb{C}^{n}$. As a result, the boundedness of Toeplitz oper ator $T_{f}$ and Hankel operator $H_{f}$ with the polynomial symbol $f$ in $z,overline{z}inmathbb{C}^{n}$ is characterized.
103 - Guangfu Cao , Li He , Ji Li 2021
We provide a boundedness criterion for the integral operator $S_{varphi}$ on the fractional Fock-Sobolev space $F^{s,2}(mathbb C^n)$, $sgeq 0$, where $S_{varphi}$ (introduced by Kehe Zhu) is given by begin{eqnarray*} S_{varphi}F(z):= int_{mathbb{C}^n } F(w) e^{z cdotbar{w}} varphi(z- bar{w}) dlambda(w) end{eqnarray*} with $varphi$ in the Fock space $F^2(mathbb C^n)$ and $dlambda(w): = pi^{-n} e^{-|w|^2} dw$ the Gaussian measure on the complex space $mathbb{C}^{n}$. This extends the recent result in Cao--Li--Shen--Wick--Yan. The main approach is to develop multipliers on the fractional Hermite-Sobolev space $W_H^{s,2}(mathbb R^n)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا