ﻻ يوجد ملخص باللغة العربية
The emergence of the magnetic field through the photosphere has multiple manifestations and sunspots are the most prominent examples of this. One of the most relevant sunspot properties, to study both its structure and evolution, is the sunspot area: either total, umbra or penumbra area. Recently Schlichenmaier et al. (2010) studied the evolution of the active region (AR) NOAA 11024 concluding that during the penumbra formation the umbra area remains constant and that the increase of the total sunspot area is caused exclusively by the penumbra growth. In this presentation the Schlichenmaiers conclusion is firstly tested, investigating the evolution of four different ARs. Hundreds of Intensitygram images from the Helioseismic and Magnetic Imager (HMI) images are used, obtained by the Solar Dynamics Observatory, in order to describe the area evolution of the above ARs and estimate the increase and decrease rates for umbra and penumbra areas, separately. A simple magnetohydrodynamic model is then tentatively used in a first approximation to explain the observed results.
One of the important open questions in solar irradiance studies is whether long-term variability (i.e. on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e. days) using solar proxies as
Using observations of sunspot magnetic field strengths (H) from the Crimean Astrophysical Observatory (CrAO) and area (S) of sunspots from the Kislovodsk Mountain Astronomical Station of Pulkovo Observatory, we investigate the changes in the relation
Long and consistent sunspot area records are important for understanding the long-term solar activity and variability. Multiple observatories around the globe have regularly recorded sunspot areas, but such individual records only cover restricted pe
We studied the relation between the distribution of sunspot groups and the Gleissberg cycle. As the magnetic field is related to the area of the sunspot groups, we used area-weighted sunspot group data. On the one hand, we confirm the previously repo
We report on the properties of halo coronal mass ejections (HCMEs) in solar cycles 23 and 24. We compare the HCMEs properties between the corresponding phases (rise, maximum, and declining) in cycles 23 and 24 in addition to comparing those between t