ترغب بنشر مسار تعليمي؟ اضغط هنا

Variation rate of sunspot area

96   0   0.0 ( 0 )
 نشر من قبل Ricardo Gafeira
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of the magnetic field through the photosphere has multiple manifestations and sunspots are the most prominent examples of this. One of the most relevant sunspot properties, to study both its structure and evolution, is the sunspot area: either total, umbra or penumbra area. Recently Schlichenmaier et al. (2010) studied the evolution of the active region (AR) NOAA 11024 concluding that during the penumbra formation the umbra area remains constant and that the increase of the total sunspot area is caused exclusively by the penumbra growth. In this presentation the Schlichenmaiers conclusion is firstly tested, investigating the evolution of four different ARs. Hundreds of Intensitygram images from the Helioseismic and Magnetic Imager (HMI) images are used, obtained by the Solar Dynamics Observatory, in order to describe the area evolution of the above ARs and estimate the increase and decrease rates for umbra and penumbra areas, separately. A simple magnetohydrodynamic model is then tentatively used in a first approximation to explain the observed results.

قيم البحث

اقرأ أيضاً

One of the important open questions in solar irradiance studies is whether long-term variability (i.e. on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e. days) using solar proxies as inputs. Preminger and Walton (2005, GRL, 32, 14109) showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which cautions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in such a way that cannot be corrected simply by applying a rescaling to sunspot area.
Using observations of sunspot magnetic field strengths (H) from the Crimean Astrophysical Observatory (CrAO) and area (S) of sunspots from the Kislovodsk Mountain Astronomical Station of Pulkovo Observatory, we investigate the changes in the relation between H and S over the period of about two solar cycles (1994-2013). The data were fitted by H = A + B log S, where A = (778+/-46) and B = (778+/-25). We show that the correlation between H and S varies with the phase of solar cycle, and $A$ coefficient decreases significantly after year 2001, while B coefficient does not change significantly. Furthermore, our data confirm the presence of two distinct populations in distribution of sunspots (small sunspots with weaker field strength and large sunspots with stronger field). We show that relative contribution of each component to the distribution of sunspots by their area changes with the phase of solar cycle and on longer-then-cycle periods. We interpret these changes as a signature of a long-term (centennial) variations in properties of sunspots.
Long and consistent sunspot area records are important for understanding the long-term solar activity and variability. Multiple observatories around the globe have regularly recorded sunspot areas, but such individual records only cover restricted pe riods of time. Furthermore, there are also systematic differences between them, so that these records need to be cross-calibrated before they can be reliably used for further studies. We produce a cross-calibrated and homogeneous record of total daily sunspot areas, both projected and corrected, covering the period between 1874 and 2019. A catalogue of calibrated individual group areas is also generated for the same period. We have compared the data from nine archives: Royal Greenwich Observatory (RGO), Kislovodsk, Pulkovo, Debrecen, Kodaikanal, Solar Optical Observing Network (SOON), Rome, Catania, and Yunnan Observatories, covering the period between 1874 and 2019. Mutual comparisons of the individual records have been employed to produce homogeneous and inter-calibrated records of daily projected and corrected areas. As in earlier studies, the basis of the composite is formed by the data from RGO. After 1976, the only datasets used are those from Kislovodsk, Pulkovo and Debrecen observatories. This choice was made based on the temporal coverage and the quality of the data. In contrast to the SOON data used in previous area composites for the post-RGO period, the properties of the data from Kislovodsk and Pulkovo are very similar to those from the RGO series. They also directly overlap the RGO data in time, which makes their cross-calibration with RGO much more reliable. We have also computed and provide the daily Photometric Sunspot Index (PSI) widely used, e.g., in empirical reconstructions of solar irradiance.
We studied the relation between the distribution of sunspot groups and the Gleissberg cycle. As the magnetic field is related to the area of the sunspot groups, we used area-weighted sunspot group data. On the one hand, we confirm the previously repo rted long-term cyclic behaviour of the sum of the northern and southern sunspot group mean latitudes, although we found a somewhat longer period (P~104 years). We introduced the difference between the ensemble average area of sunspot groups for the two hemispheres, which turns out to show similar behaviour. We also investigated a further aspect of the Gleissberg cycle where while in the 19th century the consecutive Schwabe cycles are sharply separated from each other, one century later the cycles overlap each other more and more.
We report on the properties of halo coronal mass ejections (HCMEs) in solar cycles 23 and 24. We compare the HCMEs properties between the corresponding phases (rise, maximum, and declining) in cycles 23 and 24 in addition to comparing those between t he whole cycles. Despite the significant decline in the sunspot number (SSN) in cycle 24, which dropped by 46% with respect to cycle 23, the abundance of HCMEs is similar in the two cycles. The HCME rate per SSN is 44% higher in cycle 24. In the maximum phase, cycle-24 rate normalized to SSN increased by 127% while the SSN dropped by 43%. The source longitudes of cycle-24 HCMEs are more uniformly distributed than those in cycle 23. We found that the average sky-plane speed in cycle 23 is ~16% higher than that in cycle 24. The size distributions of the associated flares between the two cycles and the corresponding phases are similar. The average speed at a central meridian distance (CMD) = 600 for cycle 23 is ~28% higher than that of cycle 24. We discuss the unusual bump in HCME activity in the declining phase of cycle 23 as due to exceptional active regions that produced many CMEs during October 2003 to October 2005. The differing HCME properties in the two cycles can be attributed to the anomalous expansion of cycle-24 CMEs. Considering the HCMEs in the rise, maximum and declining phases, we find that the maximum phase shows the highest contrast between the two cycles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا