ترغب بنشر مسار تعليمي؟ اضغط هنا

Twist-nontwist correlators in M^N/S_N orbifold CFTs

129   0   0.0 ( 0 )
 نشر من قبل Ida G. Zadeh
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider general 2D orbifold CFTs of the form M^N/S_N, with M a target space manifold and S_N the symmetric group, and generalize the Lunin-Mathur covering space technique in two ways. First, we consider excitations of twist operators by modes of fields that are not twisted by that operator, and show how to account for these excitations when computing correlation functions in the covering space. Second, we consider non-twist sector operators and show how to include the effects of these insertions in the covering space. We work two examples, one using a simple bosonic CFT, and one using the D1-D5 CFT at the orbifold point. We show that the resulting correlators have the correct form for a 2D CFT.



قيم البحث

اقرأ أيضاً

In d-dimensional CFTs with a large number of degrees of freedom an important set of operators consists of the stress tensor and its products, multi stress tensors. Thermalization of such operators, the equality between their expectation values in hea vy states and at finite temperature, is equivalent to a universal behavior of their OPE coefficients with a pair of identical heavy operators. We verify this behavior in a number of examples which include holographic and free CFTs and provide a bootstrap argument for the general case. In a free CFT we check the thermalization of multi stress tensor operators directly and also confirm the equality between the contributions of multi stress tensors to heavy-heavy-light-light correlators and to the corresponding thermal light-light two-point functions by disentangling the contributions of other light operators. Unlike multi stress tensors, these light operators violate the Eigenstate Thermalization Hypothesis and do not thermalize.
We compute, to the lowest perturbative order in $SU(N)$ Yang-Mills theory, $n$-point correlators in the coordinate and momentum representation of the gauge-invariant twist-$2$ operators with maximal spin along the $p_+$ direction, both in Minkowskian and -- by analytic continuation -- Euclidean space-time. We also construct the corresponding generating functionals. Remarkably, they have the structure of the logarithm of a functional determinant of the identity plus a term involving the effective propagators that act on the appropriate source fields.
Following recent work on heavy-light correlators in higher-dimensional conformal field theories (CFTs) with a large central charge $C_T$, we clarify the properties of stress tensor composite primary operators of minimal twist, $[T^m]$, using argument s in both CFT and gravity. We provide an efficient proof that the three-point coupling $langle mathcal{O}_Lmathcal{O}_L [T^m]rangle$, where $mathcal{O}_L$ is any light primary operator, is independent of the purely gravitational action. Next, we consider corrections to this coupling due to additional interactions in AdS effective field theory and the corresponding dual CFT. When the CFT contains a non-zero three-point coupling $langle TT mathcal{O}_Lrangle$, the three-point coupling $langle mathcal{O}_Lmathcal{O}_L [T^2]rangle$ is modified at large $C_T$ if $langle TTmathcal{O}_L rangle sim sqrt{C_T}$. This scaling is obeyed by the dilaton, by Kaluza-Klein modes of prototypical supergravity compactifications, and by scalars in stress tensor multiplets of supersymmetric CFTs. Quartic derivative interactions involving the graviton and the light probe field dual to $mathcal{O}_L$ can also modify the minimal-twist couplings; these local interactions may be generated by integrating out a spin-$ell geq 2$ bulk field at tree level, or any spin $ell$ at loop level. These results show how the minimal-twist OPE coefficients can depend on the higher-spin gap scale, even perturbatively.
Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the analytic bootstrap, we calculate anomalous dimensions and OPE coefficients as power series in $varepsilon=4-d$ and in $1/n$, with a method that generalizes to arbitrary global symmetry. Whenever comparison is possible, our results agree with earlier results obtained with diagrammatic methods in the literature. Using the numerical bootstrap, we obtain a wide variety of operator dimension bounds, and we find several islands (isolated allowed regions) in parameter space for $O(2)times O(n)$ theories for various values of $n$. Some of these islands can be attributed to fixed points predicted by perturbative methods like the $varepsilon$ and large-$n$ expansions, while others appear to arise due to fixed points that have been claimed to exist in resummations of perturbative beta functions.
We use numerical bootstrap techniques to study correlation functions of scalars transforming in the adjoint representation of $SU(N)$ in three dimensions. We obtain upper bounds on operator dimensions for various representations and study their depen dence on $N$. We discover new families of kinks, one of which could be related to bosonic QED${}_3$. We then specialize to the cases $N=3,4$, which have been conjectured to describe a phase transition respectively in the ferromagnetic complex projective model $CP^2$ and the antiferromagnetic complex projective model $ACP^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to small regions overlapping with the lattice predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا