ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Consistent C-V Characterization of Depletion Mode Buried Channel InGaAs/InAs Quantum Well FET Incorporating Strain Effects

57   0   0.0 ( 0 )
 نشر من قبل Nadim Chowdhury
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated Capacitance-Voltage (C-V) characteristics of the Depletion Mode Buried Channel InGaAs/InAs Quantum Well FET by using Self-Consistent method incorporating Quantum Mechanical (QM) effects. Though the experimental results of C-V for enhancement type device is available in recent literature, a complete characterization of electrostatic property of depletion type Buried Channel Quantum Well FET (QWFET) structure is yet to be done. C-V characteristics of the device is studied with the variation of three important process parameters: Indium (In) composition, gate dielectric and oxide thickness. We observed that inversion capacitance and ballistic current tend to increase with the increase in Indium (In) content in InGaAs barrier layer.

قيم البحث

اقرأ أيضاً

Capacitance-Voltage (C-V) & Ballistic Current- Voltage (I-V) characteristics of Double Gate (DG) Silicon-on- Insulator (SOI) Flexible FETs having sub 35nm dimensions are obtained by self-consistent method using coupled Schrodinger- Poisson solver tak ing into account the quantum mechanical effects. Although, ATLAS simulations to determine current and other short channel effects in this device have been demonstrated in recent literature, C-V & Ballistic I-V characterizations by using self-consistent method are yet to be reported. C-V characteristic of this device is investigated here with the variation of bottom gate voltage. The depletion to accumulation transition point (i.e. Threshold voltage) of the C-V curve should shift in the positive direction when the bottom gate is negatively biased and our simulation results validate this phenomenon. Ballistic performance of this device has also been studied with the variation of top gate voltage.
The Stueckelberg formulation of a manifestly covariant relativistic classical and quantum mechanics is briefly reviewed and it is shown that in this framework a simple (semiclassical) model exists for the description of neutrino oscillations. The mod el is shown to be consistent with the field equations and the Lorentz force (developed here without and with spin by canonical methods) for Glashow-Salam-Weinberg type non-Abelian fields interacting with the leptons. We discuss a possible fundamental mechanism, in the context of a relativistic theory of spin for (first quantized) quantum mechanical systems, for CP violation. The model also predicts a possibly small pull back, i.e., early arrival of a neutrino beam, for which the neutrino motion is almost everywhere within the light cone, a result which may emerge from future long baseline experiments designed to investigate neutrino transit times with significantly higher accuracy than presently available.
We demonstrate the possibility of a self-consistent characterization of the photon-number statistics of a light field by using photoemissive detectors with internal gain simply endowed with linear input/output responses. The method can be applied to both microscopic and mesoscopic photon-number regimes. The detectors must operate in the linear range without need of photon-counting capabilities.
94 - M. Zielinski 2013
I present a systematic study of self-assembled InAs/InP and InAs/GaAs quantum dots single particle and many body properties as a function of quantum dot-surrounding matrix valence band offset. I use an atomistic, empirical tight-binding approach and perform numerically demanding calculations for half-million atom nanosystems. I demonstrate that the overall confinement in quantum dots is a nontrivial interplay of two key factors: strain effects and the valence band offset. I show that strain effects determine both the peculiar structure of confined hole states of lens type InAs/GaAs quantum dots and the characteristic ,,shell-like structure of confined holes states in commonly considered low-strain lens type InAs/InP quantum dot. I also demonstrate that strain leads to single band-like behavior of hole states of disc type (,,indium flushed) InAs/GaAs and InAs/InP quantum dots. I show how strain and valence band offset affect quantum dot many-body properties: the excitonic fine structure, an important factor for efficient entangled photon pair generation, and the biexciton and charged excitons binding energies
We propose and demonstrate a relaxed-SiGe/strained-Si (SiGe/s-Si) enhancement-mode gate stack for quantum dots. The enhancement-mode SiGe/s-Si structure is pursued because it spaces the quantum dot away from charge and spin defect rich dielectric int erfaces and minimizes background dopants. A mobility of 1.6times10^5 cm^2/Vs at 5.8times10^{11}/cm^2 is measured in Hall bars that witness the same device process flow as the quantum dot. Periodic Coulomb blockade (CB) is measured in a double-top-gated lateral quantum dot nanostructure. The CB terminates with open diamonds up to pm 10 mV of DC voltage across the device. The devices were fabricated within a 150 mm Si foundry setting that uses implanted ohmics and chemical-vapor-deposited dielectrics, in contrast to previously demonstrated enhancement-mode SiGe/s-Si structures made with AuSb alloyed ohmics and atomic-layer-deposited dielectric. A modified implant, polysilicon formation and annealing conditions were utilized to minimize the thermal budget so that the buried s-Si layer would not be washed out by Ge/Si interdiffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا