ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravity induced evolution of a magnetized fermion gas with finite temperature

147   0   0.0 ( 0 )
 نشر من قبل Alain Ulacia Rey
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the near collapse dynamics of a self-gravitating magnetized electron gas at finite temperature, taken as the source of a Bianchi-I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations reduces to a complete and self-consistent system of non-linear autonomous ODEs. By considering a representative set of initial conditions, the numerical solutions of this system show the gas collapsing into both, isotropic (point--like) and anisotropic (cigar-like) singularities, depending on the intensity of the magnetic field. We also examined the behavior during the collapse stage of all relevant state and kinematic variables: the temperature, the expansion scalar, the magnetic field, the magnetization and energy density. We notice a significant qualitative difference in the behavior of the gas for a range of temperatures between the values $hbox{T}sim10^{3}hbox{K}$ and $hbox{T}sim 10^{7}hbox{K}$.



قيم البحث

اقرأ أيضاً

We examine the dynamics of a self--gravitating magnetized electron gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general and appropriate and physically motivated initial conditions, we transform Ein stein--Maxwell field equations into a complete and self--consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (point-like) and anisotropic (cigar-like) singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range $hbox{T} sim10^{4}hbox{K}$ and $hbox{T}sim 10^{7}hbox{K}$.
223 - I. Y. Park 2021
Gravity is perturbatively renormalizable for the physical states which can be conveniently defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried out for Einstein-scalar and Einstein-Maxwell systems. Var ious germane issues and all-loop renormalizability have been addressed. In the present work we make further progress by carrying out several additional tasks. Firstly, we present an alternative 4D covariant derivation of the physical state condition by examining gauge choice-independence of a scattering amplitude. To this end, a careful dichotomy between the ordinary, and large gauge symmetries is required and appropriate gauge-fixing of the ordinary symmetry must be performed. Secondly, vacuum energy is analyzed in a finite-temperature setup. A variant optimal perturbation theory is implemented to two-loop. The renormalized mass determined by the optimal perturbation theory turns out to be on the order of the temperature, allowing one to avoid the cosmological constant problem. The third task that we take up is examination of the possibility of asymptotic freedom in finite-temperature quantum electrodynamics. In spite of the debates in the literature, the idea remains reasonable.
We show that while the zero temperature induced fermion number in a chiral sigma model background depends only on the asymptotic values of the chiral field, at finite temperature the induced fermion number depends also on the detailed shape of the ch iral background. We resum the leading low temperature terms to all orders in the derivative expansion, producing a simple result that can be interpreted physically as the different effect of the chiral background on virtual pairs of the Dirac sea and on the real particles of the thermal plasma. By contrast, for a kink background, not of sigma model form, the finite temperature induced fermion number is temperature dependent but topological.
Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential, $mu$, induced by a magnetic flux running along the axis of an idealized cosmic string . These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. Specifically the charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current and it is an odd periodic function of the magnetic flux and an even function of the chemical potential. Both analyzed are developed for the cases where $|mu |$ is smaller than the mass of the field quanta, $m$.
152 - Shota Imaki , Zebin Qiu 2020
We scrutinize the novel chiral transport phenomenon driven by spacetime torsion, namely the chiral torsional effect (CTE). We calculate the torsion-induced chiral currents with finite temperature, density and curvature in the most general torsional g ravity theory. The conclusion complements the previous study on the CTE by including curvature and substantiates the relation between the CTE and the Nieh-Yan anomaly. We also analyze the response of chiral torsional current to an external electromagnetic field. The resulting topological current is analogous to that in the axion electrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا