ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization Dependent Loss and All-Optical Modulation in Graphene on Suspended Membrane Waveguides

187   0   0.0 ( 0 )
 نشر من قبل Zhenzhou Cheng
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe a strong polarization dependent optical loss of in-plane light propagation in silicon waveguide due to the presence of graphene. Both transverse-electric (TE) and transverse-magnetic (TM) modes are efficiently (~3 dB) coupled to the graphene on suspended membrane waveguides using an apodized focusing subwavelength grating. The TE mode has 7.7 dB less excess optical loss than the TM mode at 1.5 {mu}m for a 150 {mu}m long waveguide in good agreement with a theoretical model. All-optical modulation of light is demonstrated. There is also a large thermally induced change in waveguide effective index because of optical absorption in graphene.



قيم البحث

اقرأ أيضاً

In recent years we are witnessing a flourish in research aimed to facilitate alkali vapors in guided wave configurations. Owing to the significant reduction in device dimensions, the increase in density of states, the interaction with surfaces and pr imarily the high intensities carried along the structure, a rich world of light vapor interactions can be studied, and new functionalities, e.g. low power nonlinear light-matter interactions can be achieved. One immense remaining challenge is to study the effects of quantum coherence and shifts in such nano-scale waveguides, characterized by ultra-small mode areas and fast dynamics. Here, we construct a serpentine silicon-nitride wave guide, having atomic vapor as its cladding. The unprecedented mode volume of 5e-13 m^3 supported over a length of 17 mm is used to demonstrate efficient linear and non-linear spectroscopy. Fascinating and important phenomena such as van der Waals shifts, dynamical stark shifts, and coherent effects such as strong coupling (in the form of Autler Townes splitting) are all observed. The serpentine atomic cladding is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, enables operation with relatively low density of atoms and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, frequency referencing, and magnetometry to name a few.
Proposed all optical amplification scenario is based on the properties of light propagation in two coupled subwavelength metallic slab waveguides where for particular choice of waveguide parameters two propagating (symmetric) and non-propagating (ant isymmetric) eigenmodes coexist. For such a setup incident beams realize boundary conditions for forming a stationary state as a superposition of mentioned eigenmodes. It is shown both analytically and numerically that amplification rate in this completely linear mechanism diverges for small signal values.
We evaluate the nonlinear coefficient of graphene-on-silicon waveguides through the coincidence measurement of photon-pairs generated via spontaneous four-wave mixing. We observed the temporal correlation of the photon-pairs from the waveguides over various transfer layouts of graphene sheets. A simple analysis of the experimental results using coupled-wave equations revealed that the atomically-thin graphene sheets enhanced the nonlinearity of silicon waveguides up to ten-fold. The results indicate that the purely $chi^{(3)}$-based effective nonlinear refractive index of graphene is on the order of $10^{-13}$ m$^2$/W, and provide important insights for applications of graphene-based nonlinear optics in on-chip nanophotonics.
In this paper we report phase modulation obtained by inducing a capacitive charge on graphene layers embedded in the core of a waveguide. There is a biasing regime in which graphene absorption is negligible but large index variations can be achieved with a voltage-length product as small as $V_pi,L_pi simeq 0.04 $,V,cm . Examples of phase induced changes are computed for straight waveguides and for microring resonators showing the possibility to implement several optoelectronic functionalities as modulators, tunable filters, and switches.
We propose a method to generate stabilized radio-frequency polarization modulation based on optical frequency combs. Two pulse trains with the same repetition rate and different offset frequencies generate arbitrary polarization states that are modul ated at the offset frequency difference. Long-term stability of the polarization modulation is demonstrated with the modulation frequency at frep/2. Modulation at frep/4 is also demonstrated to show the flexibility of the technique. We employ an electrical delay line to fine-tune the polarization states that constitute the time-dependent modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا