ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature electrically tunable broadband terahertz Faraday effect

178   0   0.0 ( 0 )
 نشر من قبل Andrei Pimenov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The terahertz (THz) frequency range (0.1-10 THz) fills the gap between the microwave and optical parts of the electromagnetic spectrum. Recent progress in the generation and detection of the THz radiation has made it a powerful tool for fundamental research and resulted in a number of applications. However, some important components necessary to effectively manipulate THz radiation are still missing. In particular, active polarization and phase control over a broad THz band would have major applications in science and technology. It would, e.g., enable high-speed modulation for wireless communications and real-time chiral structure spectroscopy of proteins and DNA. In physics, this technology can be also used to precisely measure very weak Faraday and Kerr effects, as required, for instance, to probe the electrodynamics of topological insulators. Phase control of THz radiation has been demonstrated using various approaches. They depend either on the physical dimensions of the phase plate (and hence provide a fixed phase shift) or on a mechanically controlled time delay between optical pulses (and hence prevent fast modulation). Here, we present data that demonstrate the room temperature giant Faraday effect in HgTe can be electrically tuned over a wide frequency range (0.1-1 THz). The principle of operation is based on the field effect in a thin HgTe semimetal film. These findings together with the low scattering rate in HgTe open a new approach for high-speed amplitude and phase modulation in the THz frequency range.



قيم البحث

اقرأ أيضاً

76 - Dong Wu , Y. C. Ma , Y. Y. Niu 2018
Charge-density wave (CDW) is one of the most fundamental quantum phenomena in solids. Different from ordinary metals in which only single particle excitations exist, CDW also has collective excitations and can carry electric current in a collective f ashion. Manipulating this collective condensation for applications has long been a goal in the condensed matter and materials community. Here we show that the CDW system of 1T-TaS2 is highly sensitive to light directly from visible down to terahertz, with current responsivities around the order of ~1 AW-1 at room temperature. Our findings open a new avenue for realizing uncooled, ultrabroadband and sensitive photoelectronics continuously down to terahertz spectral range.
We report on a giant Faraday effect in an electron plasma in n-InSb probed via polarization-resolved terahertz (THz) time-domain spectroscopy. Polarization rotation angles and ellipticities reach as large as {pi}/2 and 1, respectively, over a wide fr equency range (0.3-2.5 THz) at magnetic fields of a few Tesla. The experimental results together with theoretical simulations show its promising ability to construct broadband and tunable THz polarization optics, such as a circular polarizer, half-wave plate, and polarization modulators.
Magnetic entropy and adiabatic temperature changes in and above the room-temperature region has been measured for La0.7Sr0.3Mn1-xMxO3 (M = Al, Ti) by means of magnetization and heat capacity measurements in magnetic fields up to 6 T. The magnetocalor ic effect becomes largest at the ferromagnetic ordering temperature Tc that is tuned to ~300 K by the substitution of Al or Ti for Mn. While the substitution of Al for Mn drastically reduces the entropy change, it extends considerably the working temperature span and improves the relative cooling power. The magnetocaloric effect seems to be only lightly affected by Ti substitution. Although manganites have been considered potential for magnetic refrigerants, the magnetocaloric effect in these materials is limited due to the existence of short-range ferromagnetic correlations above Tc.
We report on reflective electro-optic sampling measurements of TeraHertz emission from nanometer-gate-length InGaAs-based high electron mobility transistors. The room temperature coherent gate-voltage tunable emission is demonstrated. We establish th at the physical mechanism of the coherent TeraHertz emission is related to the plasma waves driven by simultaneous current and optical excitation. A significant shift of the plasma frequency and the narrowing of the emission with increasing channels current are observed and explained as due to the increase of the carriers density and drift velocity.
We present a new class of artificial materials which exhibit a tailored response to the electrical component of electromagnetic radiation. These electric metamaterials (EM-MMs) are investigated theoretically, computationally, and experimentally using terahertz time-domain spectroscopy. These structures display a resonant response including regions of negative permittivity (epsilon < 0) ranging from ~500 GHz to 1 THz. Conventional electric media such as distributed wires are difficult to incorporate into metamaterials. In contrast, these new localized structures will simplify the construction of future metamaterials - including those with negative index of refraction - and will enhance the design and fabrication of functional THz devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا