ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Test of Chiral Dynamics in the boldmath$vec{gamma} p rightarrow pi^0p$ Reaction

338   0   0.0 ( 0 )
 نشر من قبل David Hornidge
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A precision measurement of the differential cross sections $dsigma/dOmega$ and the linearly polarized photon asymmetry $Sigma equiv (dsigma_perp - dsigma_parallel) slash (dsigma_perp + dsigma_parallel)$ for the $vec{gamma} p rightarrow pi^0p$ reaction in the near-threshold region has been performed with a tagged photon beam and almost $4pi$ detector at the Mainz Microtron. The Glasgow-Mainz photon tagging facility along with the Crystal Ball/TAPS multi-photon detector system and a cryogenic liquid hydrogen target were used. These data allowed for a precise determination of the energy dependence of the real parts of the $S$- and all three $P$-wave amplitudes for the first time and provide the most stringent test to date of the predictions of Chiral Perturbation Theory and its energy region of agreement with experiment.



قيم البحث

اقرأ أيضاً

72 - D. Ho , P. Peng , C. Bass 2017
We report the first beam-target double-polarization asymmetries in the $gamma + n(p) rightarrow pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {it{E}} polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses, and have led to significant revisions for several $gamma nN^*$ resonance photo-couplings.
We report the first large-acceptance measurement of polarization transfer from a polarized photon beam to a recoiling nucleon, pioneering a novel polarimetry technique with wide application to future nuclear and hadronic physics experiments. The comm issioning measurement of polarization transfer in the $^{1}H$($vec{gamma}$,$vec{p}$)$pi^{0}$ reaction in the range $0.4<E_{gamma}<1.4$ GeV is highly selective regarding the basic parameterizations used in partial wave analyses to extract the nucleon excitation spectrum. The new data strongly favor the recently proposed Chew-Mandelstam formalism.
First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $vec gamma vec p to pi^+n$, has been measured using a circularly polarized tagged-photon beam, wit h energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Julich, and SAID groups.
The recoil proton polarization has been measured in the p (vec e,evec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spi n precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 pm 1.3 pm 1.4) %, P_y = (-43.1 pm 1.3 pm 2.2) %, and P_z/P_e = (56.2 pm 1.5 pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4pm 0.7_{stat}pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.
The spin correlation coefficent combinations A_{xx}+A_{yy} and A_{xx}-A_{yy}, the spin correlation coefficients A_{xz} and A_{zz}, and the analyzing power were measured for vec p vec p --> d pi^+ between center-of-mass angles 25 deg leq theta leq 65 deg at beam energies of 350.5, 375.0 and 400.0 MeV. The experiment was carried out with a polarized internal target and a stored, polarized beam. Non-vertical beam polarization needed for the measurement of A_{zz} was obtained by the use of solenoidal spin rotators. Near threshold, only a few partial waves contribute, and pion s- and p-waves dominate with a possible small admixture of d-waves. Certain combinations of the observables reported here are a direct measure of these d-waves. The d-wave contributions are found to be negligible even at 400.0 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا