ترغب بنشر مسار تعليمي؟ اضغط هنا

Squiral diffraction

54   0   0.0 ( 0 )
 نشر من قبل Uwe Grimm
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Uwe Grimm




اسأل ChatGPT حول البحث

The Thue-Morse system is a paradigm of singular continuous diffraction in one dimension. Here, we consider a planar system, constructed by a bijective block substitution rule, which is locally equivalent to the squiral inflation rule. For balanced weights, its diffraction is purely singular continuous. The diffraction measure is a two-dimensional Riesz product that can be calculated explicitly.


قيم البحث

اقرأ أيضاً

Approximating marginals of a graphical model is one of the fundamental problems in the theory of networks. In a recent paper a method was shown to construct a variational free energy such that the linear response estimates, and maximum entropy estima tes (for beliefs) are in agreement, with implications for direct and inverse Ising problems[1]. In this paper we demonstrate an extension of that method, incorporating new information from the response matrix, and we recover the adaptive-TAP equations as the first order approximation[2]. The method is flexible with respect to applications of the cluster variational method, special cases of this method include Naive Mean Field (NMF) and Bethe. We demonstrate that the new framework improves estimation of marginals by orders of magnitude over standard implementations in the weak coupling limit. Beyond the weakly coupled regime we show there is an improvement in a model where the NMF and Bethe approximations are known to be poor for reasons of frustration and short loops.
Experiments on particles motion in living cells show that it is often subdiffusive. This subdiffusion may be due to trapping, percolation-like structures, or viscoelatic behavior of the medium. While the models based on trapping (leading to continuou s-time random walks) can easily be distinguished from the rest by testing their non-ergodicity, the latter two cases are harder to distinguish. We propose a statistical test for distinguishing between these two based on the space-filling properties of trajectories, and prove its feasibility and specificity using synthetic data. We moreover present a flow-chart for making a decision on a type of subdiffusion for a broader class of models.
We study the problem of determining the capacity of the binary perceptron for two variants of the problem where the corresponding constraint is symmetric. We call these variants the rectangle-binary-perceptron (RPB) and the $u-$function-binary-percep tron (UBP). We show that, unlike for the usual step-function-binary-perceptron, the critical capacity in these symmetric cases is given by the annealed computation in a large region of parameter space (for all rectangular constraints and for narrow enough $u-$function constraints, $K<K^*$). We prove this fact (under two natural assumptions) using the first and second moment methods. We further use the second moment method to conjecture that solutions of the symmetric binary perceptrons are organized in a so-called frozen-1RSB structure, without using the replica method. We then use the replica method to estimate the capacity threshold for the UBP case when the $u-$function is wide $K>K^*$. We conclude that full-step-replica-symmetry breaking would have to be evaluated in order to obtain the exact capacity in this case.
We introduce a log-gas model that is a generalization of a random matrix ensemble with an additional interaction, whose strength depends on a parameter $gamma$. The equilibrium density is computed by numerically solving the Riemann-Hilbert problem as sociated with the ensemble. The effect of the additional parameter $gamma$ associated with the two-body interaction can be understood in terms of an effective $gamma$-dependent single-particle confining potential.
146 - G.S.Dhesi , M. Ausloos 2016
Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known as highly relevant, in topics rang ing from ferroelectrics to quotation networks. Combining these two points leads to examine finite size random matrices. To obtain basic materials properties, the Green function associated to the matrix has to be calculated. In order to obtain the first finite size correction a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green function of Wigner random sign real symmetric N x N matrices to order 1/N are in fine obtained analytically. Related simulation results are also presented. The comparison between the analytical formulae and finite size matrices numerical diagonalization results exhibits an excellent agreement, confirming the correctness of the first order finite size expression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا