ﻻ يوجد ملخص باللغة العربية
The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.
Performance demands for high and super-high luminosity at the LHC (up to 10^35 cm^(-2) sec^(-1) after the 2017 shutdown) and at future colliders demand high resolution tracking detectors with very fast time response and excellent temporal and spatial
Plasma panel detectors are a variant of micropattern detectors that are sensitive to ionizing radiation. They are motivated by the design and operation of plasma display panels. The detectors consist of arrays of electrically and optically isolated p
The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells
The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are descr
Several future high-energy physics facilities are currently being planned. The proposed projects include high energy $e^+ e^-$ circular and linear colliders, hadron colliders and muon colliders, while the Electron-Ion Collider (EIC) has already been