ترغب بنشر مسار تعليمي؟ اضغط هنا

Valence-shell single photoionization of Kr$^{+}$ ions: Experiment and Theory

89   0   0.0 ( 0 )
 نشر من قبل Brendan McLaughlin Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoionization of Kr$^+$ ions was studied in the energy range from 23.3 eV to 39.0 eV at a photon energy resolution of 7.5 meV. Absolute measurements were performed by merging beams of Kr$^+$ ions and of monochromatized synchrotron undulator radiation. Photoionization (PI) of this Br-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Resonance features observed in the experimental spectra are spectroscopically assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are benchmarked against state-of-the-art theoretical cross-section calculations from the Dirac-Coulomb R-matrix method.

قيم البحث

اقرأ أيضاً

Using the photon-ion merged-beams technique at a synchrotron light source, we have measured relative cross sections for single and up to five-fold photoionization of Fe$^{2+}$ ions in the energy range 690--920 eV. This range contains thresholds and r esonances associated with ionization and excitation of $2p$ and $2s$ electrons. Calculations were performed to simulate the total absorption spectra. The theoretical results show very good agreement with the experimental data, if overall energy shifts of up to 2.5 eV are applied to the calculated resonance positions and assumptions are made about the initial experimental population of the various levels of the Fe$^{2+}$([Ar]$3d^6$) ground configuration. Furthermore, we performed extensive calculations of the Auger cascades that result when an electron is removed from the $2p$ subshell of Fe$^{2+}$. These computations lead to a better agreement with the measured product-charge-state distributions as compared to earlier work. We conclude that the $L$-shell absorption features of low-charged iron ions are useful for identifying gas-phase iron in the interstellar medium and for discriminating against the various forms of condensed-phase iron bound to composite interstellar dust grains.
We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s $^1S_0$. The continuum dressing with a 1064 nm laser, couples t he same region of the continuum to the {4s $^1S_0$} state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by as much as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schr{o}dinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.
Single, double, and triple ionization of the C+ ion by a single photon have been investigated in the energy range 286 to 326 eV around the K-shell single-ionization threshold at an unprecedented level of detail. At energy resolutions as low as 12 meV , corresponding to a resolving power of 24000, natural linewidths of the most prominent resonances could be determined. From the measurement of absolute cross sections, oscillator strengths, Einstein coefficients, multi-electron Auger decay rates and other transition parameters of the main K-shell excitation and decay processes are derived. The cross sections are compared to results of previous theoretical calculations. Mixed levels of agreement are found despite the relatively simple atomic structure of the C+ ion with only 5 electrons. This paper is a follow-up of a previous Letter [Muller et al., Phys. Rev. Lett. 114, 013002 (2015)].
We present $R$-matrix calculations of photoabsorption and photoionization cross sections across the K-edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an o ptical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas--Fermi--Dirac statistical model potential. Configuration interaction is considered among all states up to $n=3$. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for modeling of features found in photoionized plasmas.
Relative cross sections for the valence shell photoionisation (PI) of $rm ^2S$ ground level and $rm ^2D$ metastable Ca$^{+}$ ions were measured with high energy resolution by using the ion-photon merged-beams technique at the Advanced Light Source. O verview measurements were performed with a full width at half maximum bandpass of $Delta E =17$~meV, covering the energy range 20~eV -- 56~eV. Details of the PI spectrum were investigated at energy resolutions reaching the level of $Delta E=3.3$~meV. The photon energy scale was calibrated with an uncertainty of $pm5$~meV. By comparison with previous absolute measurements %by Kjeldsen et al in the energy range 28~eV -- 30.5~eV and by Lyon et al in the energy range 28~eV -- 43~eV the present experimental high-resolution data were normalised to an absolute cross-section scale and the fraction of metastable Ca$^{+}$ ions that were present in the parent ion beam was determined to be 18$pm$4%. Large-scale R-matrix calculations using the Dirac Coulomb approximation and employing 594 levels in the close-coupling expansion were performed for the Ca$^{+}(3s^23p^64s~^2textrm{S}_{1/2})$ and Ca$^{+}(3s^2 3p^6 3d~^2textrm{D}_{3/2,5/2})$ levels. The experimental data are compared with the results of these calculations and previous theoretical and experimental studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا