ترغب بنشر مسار تعليمي؟ اضغط هنا

إنتاج أشعة الذرات النادرة المسيطرة بالدوران

Production of spin-controlled rare isotope beams

781   0   0.0 ( 0 )
 نشر من قبل Yuichi Ichikawa
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The degree of freedom of spin in quantum systems serves as an unparalleled laboratory where intriguing quantum physical properties can be observed, and the ability to control spin is a powerful tool in physics research. We propose a novel method for controlling spin in a system of rare isotopes which takes advantage of the mechanism of the projectile fragmentation reaction combined with the momentum-dispersion matching technique. The present method was verified in an experiment at the RIKEN RI Beam Factory, in which a degree of alignment of 8% was achieved for the spin of a rare isotope Al-32. The figure of merit for the present method was found to be greater than that of the conventional method by a factor of more than 50.



قيم البحث

اقرأ أيضاً

The proposed cyclotron gas-stopping scheme for the efficient thermalization of intense rare isotope beams is examined. Simulations expand on previous studies and expose many complications of such an apparatus arising from physical effects not account ed for properly in previous work. The previously proposed cyclotron gas-stopper geometry is found to have a near null efficiency, but extended simulations suggest that a device with a much larger pole gap could achieve a stopping efficiency approaching roughly 90% and at least a 10 times larger acceptance. However, some of the advantages that were incorrectly predicted in previous simulations for high intensity operation of this device are compromised.
New measurements and reaction model calculations are reported for single neutron pickup reactions onto a fast uc{22}{Mg} secondary beam at 84 MeV per nucleon. Measurements were made on both carbon and beryllium targets, having very different structu res, allowing a first investigation of the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and $gamma$-ray spectroscopy of the projectile-like reaction residue for final-state resolution, that permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the $ uc{12}{C} ( uc{22}{Mg}, uc{23}{Mg}+gamma)X$ reaction largely proceeds as a direct two-body reaction, the neutron transfer producing bound uc{11}{C} target residues. The corresponding reaction on the uc{9}{Be} target seems to largely leave the uc{8}{Be} residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei, and also their expected sensitivity to neutron high-$ell$ (intruder) states which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.
We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path.
Pion energy spectra are presented for central collisions of neutron-rich 132Sn+124Sn and neutron-deficient 108Sn+112Sn systems using simulations with Boltzmann-Uehling-Uhlenbeck transport model. These calculations, which incorporate isospin-dependent mean field potentials for relevant baryons and mesons, display a sensitivity to the pion spectra that could allow significant constraints on the density dependence of the symmetry energy and its mean field potential at supra-saturation densities. The predicted sensitivity increases with the isospin asymmetry of the total system and decreases with incident energy.
The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyper on-nucleon interactions in the neutron rich medium, and hypernuclear magnetic moments to investigate baryon properties in the nuclei. We are currently preparing for the first experiment with $^6$Li and $^{12}$C beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear spectroscopy by identifying $^{3}_{Lambda}$H, $^{4}_{Lambda}$H and $^{5}_{Lambda}$He. The first physics experiment on these hypernuclei is planned for 2009. In the present document, an overview of the HypHI project and the details of this first experiment will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا