ترغب بنشر مسار تعليمي؟ اضغط هنا

Tera-scale Astronomical Data Analysis and Visualization

255   0   0.0 ( 0 )
 نشر من قبل Amr Hassan
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a high-performance, graphics processing unit (GPU)-based framework for the efficient analysis and visualization of (nearly) terabyte (TB)-sized 3-dimensional images. Using a cluster of 96 GPUs, we demonstrate for a 0.5 TB image: (1) volume rendering using an arbitrary transfer function at 7--10 frames per second; (2) computation of basic global image statistics such as the mean intensity and standard deviation in 1.7 s; (3) evaluation of the image histogram in 4 s; and (4) evaluation of the global image median intensity in just 45 s. Our measured results correspond to a raw computational throughput approaching one teravoxel per second, and are 10--100 times faster than the best possible performance with traditional single-node, multi-core CPU implementations. A scalability analysis shows the framework will scale well to images sized 1 TB and beyond. Other parallel data analysis algorithms can be added to the framework with relative ease, and accordingly, we present our framework as a possible solution to the image analysis and visualization requirements of next-generation telescopes, including the forthcoming Square Kilometre Array pathfinder radiotelescopes.



قيم البحث

اقرأ أيضاً

110 - A. H. Hassan , C. J. Fluke , 2011
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, t he increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed todays single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a software as a service manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.
179 - A.H. Hassan , C.J. Fluke , 2012
We present a framework to interactively volume-render three-dimensional data cubes using distributed ray-casting and volume bricking over a cluster of workstations powered by one or more graphics processing units (GPUs) and a multi-core CPU. The main design target for this framework is to provide an in-core visualization solution able to provide three-dimensional interactive views of terabyte-sized data cubes. We tested the presented framework using a computing cluster comprising 64 nodes with a total of 128 GPUs. The framework proved to be scalable to render a 204 GB data cube with an average of 30 frames per second. Our performance analyses also compare between using NVIDIA Tesla 1060 and 2050 GPU architectures and the effect of increasing the visualization output resolution on the rendering performance. Although our initial focus, and the examples presented in this work, is volume rendering of spectral data cubes from radio astronomy, we contend that our approach has applicability to other disciplines where close to real-time volume rendering of terabyte-order 3D data sets is a requirement.
65 - C. Bordiu 2020
We report the outcomes of a survey that explores the current practices, needs and expectations of the astrophysics community, concerning four research aspects: open science practices, data access and management, data visualization, and data analysis. The survey, involving 329 professionals from several research institutions, pinpoints significant gaps in matters such as results reproducibility, availability of visual analytics tools and adoption of Machine Learning techniques for data analysis. This research is conducted in the context of the H2020 NEANIAS project.
We present CosmoHub (https://cosmohub.pic.es), a web application based on Hadoop to perform interactive exploration and distribution of massive cosmological datasets. Recent Cosmology seeks to unveil the nature of both dark matter and dark energy map ping the large-scale structure of the Universe, through the analysis of massive amounts of astronomical data, progressively increasing during the last (and future) decades with the digitization and automation of the experimental techniques. CosmoHub, hosted and developed at the Port dInformacio Cientifica (PIC), provides support to a worldwide community of scientists, without requiring the end user to know any Structured Query Language (SQL). It is serving data of several large international collaborations such as the Euclid space mission, the Dark Energy Survey (DES), the Physics of the Accelerating Universe Survey (PAUS) and the Marenostrum Institut de Ci`encies de lEspai (MICE) numerical simulations. While originally developed as a PostgreSQL relational database web frontend, this work describes the current version of CosmoHub, built on top of Apache Hive, which facilitates scalable reading, writing and managing huge datasets. As CosmoHubs datasets are seldomly modified, Hive it is a better fit. Over 60 TiB of catalogued information and $50 times 10^9$ astronomical objects can be interactively explored using an integrated visualization tool which includes 1D histogram and 2D heatmap plots. In our current implementation, online exploration of datasets of $10^9$ objects can be done in a timescale of tens of seconds. Users can also download customized subsets of data in standard formats generated in few minutes.
Scientific visualization tools are currently not optimized to create cinematic, production-quality representations of numerical data for the purpose of science communication. In our pipeline texttt{Estra}, we outline a step-by-step process from a raw simulation into a finished render as a way to teach non-experts in the field of visualization how to achieve production-quality outputs on their own. We demonstrate feasibility of using the visual effects software Houdini for cinematic astrophysical data visualization, informed by machine learning clustering algorithms. To demonstrate the capabilities of this pipeline, we used a post-impact, thermally-equilibrated Moon-forming synestia from cite{Lock18}. Our approach aims to identify physically interpretable clusters, where clusters identified in an appropriate phase space (e.g. here we use a temperature-entropy phase-space) correspond to physically meaningful structures within the simulation data. Clustering results can then be used to highlight these structures by informing the color-mapping process in a simplified Houdini software shading network, where dissimilar phase-space clusters are mapped to different color values for easier visual identification. Cluster information can also be used in 3D position space, via Houdinis Scene View, to aid in physical cluster finding, simulation prototyping, and data exploration. Our clustering-based renders are compared to those created by the Advanced Visualization Lab (AVL) team for the full dome show Imagine the Moon as proof of concept. With texttt{Estra}, scientists have a tool to create their own production-quality, data-driven visualizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا