ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-UV and optical observations of the transiting exoplanet TrES-3b

127   0   0.0 ( 0 )
 نشر من قبل Jake Turner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed nine primary transits of the hot Jupiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8 G and 30 G. Using these magnetic field values and an assumed B_star of 100 G, the Vidotto et al. method predicts a timing difference of 5-11 min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7 mmag. However, we determined an upper limit of TrES-3bs magnetic field strength to range between 0.013 and 1.3 G (for a 1-100 G magnetic field strength range for the host star, TrES-3) using a timing difference of 138 s derived from the Nyquist-Shannon sampling theorem. To verify our results of an abnormally small magnetic field strength for TrES-3b and to further constrain the techniques of Vidotto et al., we propose future observations of TrES-3b with other platforms capable of achieving a shorter near-UV cadence. We also present a refinement of the physical parameters of TrES-3b, an updated ephemeris and its first published near-UV light curve. We find that the near-UV planetary radius of Rp = 1.386+0.248-0.144 RJup is consistent with the planets optical radius.



قيم البحث

اقرأ أيضاً

152 - E. K. Simpson 2009
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the ef fect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (lambda) is small and consistent with zero within 2 sigma; lambda = 15 +10/-9 deg. WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically-gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6 +2.2/-2.1 km/s) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5 km/s). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. (2009) designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7 +1.4/-1.3 km/s).
We present a photometric follow-up of transiting exoplanets HAT-P-3b and TrES-3b, observed by using several optical and near-infrared filters, with four small-class telescopes (D = 36--152cm) in the Northern Hemisphere. Two of the facilities present their first scientific results. New 10 HAT-P-3b light curves and new 26 TrES-3b light curves are reduced and combined by filter in order to improve the quality of the photometry. Combined light curves fitting is carried out independently by using two different analysis packages, allowing the corroboration of the orbital and physical parameters in the literature. Results find no differences in the relative radius with the observing filter. In particular, we report for HAT-P-3b a first estimation of the planet-to-star radius Rp/R* = 0.1112+0.0025-0.0026 in the B band which is coherent with values found in the VRIzJH filters. Concerning TrES-3b, we derive a value for the orbital period of P = 1.3061862+-0.0000001 days which shows no linear variations over nine years of photometric observations.
We set to search for Rayleigh scattering and K and Na absorption signatures from the atmosphere of TrES-3b using ground-based transmission spectroscopy covering the wavelength range from 530 to 950 nm as observed with OSIRIS@GTC. Our analysis is ba sed on a Bayesian approach where the light curves covering a set of given passbands are fitted jointly with PHOENIX-calculated stellar limb darkening profiles. The analysis is carried out assuming both white and red -- temporally correlated -- noise, with two approaches (Gaussian processes and divide-by-white) to account for the red noise. An initial analysis reveals a transmission spectrum that shows a strong Rayleigh-like increase in extinction towards the blue end of the spectrum, and enhanced extinction around the K I resonance doublet near 767 nm. However, the signal amplitudes are significantly larger than expected from theoretical considerations. A detailed analysis reveals that the K I-like feature is entirely due to variability in the telluric O$_2$ absorption, but the Rayleigh-like feature remains unexplained.
Much of the focus of exoplanet atmosphere analysis in the coming decade will be atinfrared wavelengths, with the planned launches of the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope (WFIRST). However, without being p laced in the context of broader wavelength coverage, especially in the optical and ultraviolet, infrared observations produce an incomplete picture of exoplanet atmospheres. Scattering information encoded in blue optical and near-UV observations can help determine whether muted spectral features observed in the infrared are due to a hazy/cloudy atmosphere, or a clear atmosphere with a higher mean molecular weight. UV observations can identify atmospheric escape and mass loss from exoplanet atmospheres, providing a greater understanding of the atmospheric evolution of exoplanets, along with composition information from above the cloud deck. In this white paper we focus on the science case for exoplanet observations in the near-UV; an accompanying white paper led by Eric Lopez will focus on the science case in the far-UV.
We observed the 2019 January total lunar eclipse with the Hubble Space Telescopes STIS spectrograph to obtain the first near-UV (1700-3200 $r{A}$) observation of Earth as a transiting exoplanet. The observatories and instruments that will be able to perform transmission spectroscopy of exo-Earths are beginning to be planned, and characterizing the transmission spectrum of Earth is vital to ensuring that key spectral features (e.g., ozone, or O$_3$) are appropriately captured in mission concept studies. O$_3$ is photochemically produced from O$_2$, a product of the dominant metabolism on Earth today, and it will be sought in future observations as critical evidence for life on exoplanets. Ground-based observations of lunar eclipses have provided the Earths transmission spectrum at optical and near-IR wavelengths, but the strongest O$_3$ signatures are in the near-UV. We describe the observations and methods used to extract a transmission spectrum from Hubble lunar eclipse spectra, and identify spectral features of O$_3$ and Rayleigh scattering in the 3000-5500 r{A} region in Earths transmission spectrum by comparing to Earth models that include refraction effects in the terrestrial atmosphere during a lunar eclipse. Our near-UV spectra are featureless, a consequence of missing the narrow time span during the eclipse when near-UV sunlight is not completely attenuated through Earths atmosphere due to extremely strong O$_3$ absorption and when sunlight is transmitted to the lunar surface at altitudes where it passes through the O$_3$ layer rather than above it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا