ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting parameters of BaPt(4-x)Au(x)Ge12 filled skutterudite

169   0   0.0 ( 0 )
 نشر من قبل Alexander Maisuradze
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a study of the superconducting properties for a series of polycrystalline BaPt(4-x)Au(x)Ge12 filled skutterudite compounds for x = 0, 0.5, 0.75, and 1. Muon spin rotation (muSR) spectroscopy as well as magnetization, specific heat, and electrical resistivity measurements were performed. The magnetic penetration depth lambda, the coherence length xi, and the Ginzburg-Landau parameter kappa are evaluated. The temperature dependence of the superfluid density is well described by an s-wave superconducting gap and this classical scenario is supported by the field-independent lambda. The gap-to-Tc ratio Delta/kTc increases with the Au content from 1.70 for x = 0 to 2.1(1) for x = 1. By combining muSR, magnetization, and specific heat data, we find that BaPt(4-x)Au(x)Ge12 compounds are in between the dirty and clean limits with mean free paths of the carriers l ~ xi. Interestingly, resistivity data for BaPt4Ge12 indicate a much higher upper critical field, which is probably due to defects or impurities close to the surface of the crystallites.



قيم البحث

اقرأ أيضاً

53 - I. Jeon , K. Huang , D. Yazici 2016
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt$_{4}$Ge$_{12-x}$Sb$_x$. Polycrystalline samples with Sb concentrations up to $x =$ 5 were synthesized and investigated by means of x-ray diffr action, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to $x =$ 4, above which, no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, $gamma$, of superconducting specimens decreases with increasing $x$ up to $x =$ 3, suggesting that superconductivity may depend on the density of electronic states in this system. The specific heat for $x =$ 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. We observed evidence for a weak rattling mode associated with the Pr ions, characterized by an Einstein temperature $Theta_{mathrm{E}} sim$ 60 K for 0 $leq x leq$ 5; however, the rattling mode may not play any role in suppressing superconductivity.
271 - M. Yogi , T. Nagai , Y. Imamura 2006
We report on Sb nuclear-quadrupole-resonance (NQR) study in filled-skutterudite compounds (Pr_1-xLa_x)Os_4Sb_12. The Sb-NQR spectra have split into two sets, arising from different Sb_12 cages containing either Pr or La, which enables us to measure t wo kinds of nuclear spin-lattice relaxation time T_1^Pr and T_1^La. In the normal state, the temperature (T) dependence of 1/T^Pr_1T showed almost the same behavior as that for PrOs_4Sb_12 regardless of. In contrast, 1/T^La_1T markedly decreases with increasing La concentration. In the superconducting state for x=0.05 and 0.2, 1/T_1^Pr exponentially decreases down to T=0.7 K with no coherence peak below T_c as well as in PrOs_4Sb_12. A remarkable finding is that the residual density of states at the Fermi level below T_c is induced by La substitution for Pr. These results are proposed to be understood in terms of a multiband-superconductivity model that assumes a full gap for part of the FS and the presence of point nodes for a small 4f^2-derived FS inherent in PrOs_4Sb_12. For x=0.8 and 1,1/T^La_1 exhibits a coherence peak and the nodeless energy gap characteristic for weak-coupling s-wave superconductors. With increasing Pr content, T_c and the energy gap increases. The novel strong-coupling superconductivity in PrOs_4Sb_12 is inferred to be mediated by the local interaction between 4f^2-derived crystal-electric-field states with the electric quadrupole degree of freedom and conduction electrons. This coupling causes a mass enhancement of quasi-particles for a part of FS and induces a small FS, which is responsible for point nodes in the superconducting gap function. Note that the small FS does not play any primary role for the strong-coupling superconductivity in PrOs_4Sb_12.
We report the electronic and superconducting properties in the Pr-based filled-skutterudite superconductor PrRu$_4$Sb$_{12}$ with $T_c = 1.3$ K via the measurements of nuclear-quadrupole-resonance (NQR) frequency $ u_Q$ and nuclear-spin-lattice-relax ation time $T_1$ of Sb nuclei. The temperature dependence of $ u_Q$ has revealed the energy scheme of Pr$^{3+}$ crystal electric field (CEF) that is consistent with an energy separation $Delta_{CEF}sim 70$K between the ground state and the first-excited state. In the normal state, the Korringa relation of $(1/T_1T)_{Pr}$=const. is valid, with [$(1/T_{1}T$)$_{Pr}$/$(1/T_{1}T$)$_{La}$]$^{1/2}$ $sim$ 1.44 where $(1/T_1T)_{La}$ is for LaRu$_4$Sb$_{12}$. These results are understood in terms of a conventional Fermi liquid picture in which the Pr-$4f^2$ state derives neither magnetic nor quadrupolar degrees of freedom at low temperatures. In the superconducting state, $1/T_1$ shows a distinct coherence peak just below $T_c$, followed by an exponential decrease with a value of 2$Delta/k_{B}T_{c}$ = 3.1. These results demonstrate that PrRu$_4$Sb$_{12}$ is a typical weak-coupling s-wave superconductor, in strong contrast with the heavy-fermion superconductor PrOs$_4$Sb$_{12}$ that is in an unconventional strong coupling regime. The present study on PrRu$_4$Sb$_{12}$ highlights that the Pr-$4f^2$derived non-magnetic doublet plays a key role in the unconventional electronic and superconducting properties in PrOs$_4$Sb$_{12}$.
The correlations between stripe order, superconductivity, and crystal structure in La(2-x)Ba(x)CuO(4) single crystals have been studied by means of x-ray and neutron diffraction as well as static magnetization measurements. The derived phase diagram shows that charge stripe order (CO) coexists with bulk superconductivity in a broad range of doping around x=1/8, although the CO order parameter falls off quickly for x<>1/8. Except for x=0.155, the onset of CO always coincides with the transition between the orthorhombic and the tetragonal low temperature structures. The CO transition evolves from a sharp drop at low x to a more gradual transition at higher x, eventually falling below the structural phase boundary for optimum doping. With respect to the interlayer CO correlations, we find no qualitative change of the stripe stacking order as a function of doping, and in-plane and out-of-plane correlations disappear simultaneously at the transition. Similarly to the CO, the spin stripe order (SO) is also most pronounced at x=1/8. Truly static SO sets in below the CO and coincides with the first appearance of in-plane superconducting correlations at temperatures significantly above the bulk transition to superconductivity (SC). Indications that bulk SC causes a reduction of the spin or charge stripe order could not be identified. We argue that CO is the dominant order that is compatible with SC pairing but competes with SC phase coherence. Comparing our results with data from the literature, we find good agreement if all results are plotted as a function of x instead of the nominal x, where x represents an estimate of the actual Ba content, extracted from the doping dependence of the structural transition between the orthorhombic phase and the tetragonal high-temperature phase.
We report measurements of the magnetic penetration depth $lambda$ in single crystals of Pr(Os$_{1-x}$Ru$_{x}$)$_{4}$Sb$_{12}$ down to 0.1 K. Both $lambda$ and superfluid density $rho_{s}$ exhibit an exponential behavior for the $x$$geq$0.4 samples, g oing from weak ($x$=0.4,0.6), to moderate, coupling ($x$=0.8). For the $x$$leq$0.2 samples, both $lambda$ and $rho_{s}$ vary as $T^{2}$ at low temperatures, but $rho_{s}$ is s-wave-like at intermediate to high temperatures. Our data are consistent with a three-phase scenario, where a fully-gapped phase at $T_{c1}$ undergoes two transitions: first to an unconventional phase at $T_{c2}$$lesssim$$T_{c1}$, then to a nodal low-$T$ phase at $T_{c3}$$<$$T_{c2}$, for small values of $x$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا