ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tale Of 160 Scientists, Three Applications, A Workshop and A Cloud

45   0   0.0 ( 0 )
 نشر من قبل Bruce Berriman
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

The NASA Exoplanet Science Institute (NExScI) hosts the annual Sagan Workshops, thematic meetings aimed at introducing researchers to the latest tools and methodologies in exoplanet research. The theme of the Summer 2012 workshop, held from July 23 to July 27 at Caltech, was to explore the use of exoplanet light curves to study planetary system architectures and atmospheres. A major part of the workshop was to use hands-on sessions to instruct attendees in the use of three open source tools for the analysis of light curves, especially from the Kepler mission. Each hands-on session involved the 160 attendees using their laptops to follow step-by-step tutorials given by experts. We describe how we used the Amazon Elastic Cloud 2 to run these applications.

قيم البحث

اقرأ أيضاً

Measuring what linguistic information is encoded in neural models of language has become popular in NLP. Researchers approach this enterprise by training probes - supervised models designed to extract linguistic structure from another models output. One such probe is the structural probe (Hewitt and Manning, 2019), designed to quantify the extent to which syntactic information is encoded in contextualised word representations. The structural probe has a novel design, unattested in the parsing literature, the precise benefit of which is not immediately obvious. To explore whether syntactic probes would do better to make use of existing techniques, we compare the structural probe to a more traditional parser with an identical lightweight parameterisation. The parser outperforms structural probe on UUAS in seven of nine analysed languages, often by a substantial amount (e.g. by 11.1 points in English). Under a second less common metric, however, there is the opposite trend - the structural probe outperforms the parser. This begs the question: which metric should we prefer?
With the proliferation of mobile applications, Mobile Cloud Computing (MCC) has been proposed to help mobile devices save energy and improve computation performance. To further improve the quality of service (QoS) of MCC, cloud servers can be deploye d locally so that the latency is decreased. However, the computational resource of the local cloud is generally limited. In this paper, we design a threshold-based policy to improve the QoS of MCC by cooperation of the local cloud and Internet cloud resources, which takes the advantages of low latency of the local cloud and abundant computational resources of the Internet cloud simultaneously. This policy also applies a priority queue in terms of delay requirements of applications. The optimal thresholds depending on the traffic load is obtained via a proposed algorithm. Numerical results show that the QoS can be greatly enhanced with the assistance of Internet cloud when the local cloud is overloaded. Better QoS is achieved if the local cloud order tasks according to their delay requirements, where delay-sensitive applications are executed ahead of delay-tolerant applications. Moreover, the optimal thresholds of the policy have a sound impact on the QoS of the system.
78 - V. Tokareva , A. Haungs , D. Kang 2019
Nowadays astroparticle physics faces a rapid data volume increase. Meanwhile, there are still challenges of testing the theoretical models for clarifying the origin of cosmic rays by applying a multi-messenger approach, machine learning and investiga tion of the phenomena related to the rare statistics in detecting incoming particles. The problems are related to the accurate data mapping and data management as well as to the distributed storage and high-performance data processing. In particular, one could be interested in employing such solutions in study of air-showers induced by ultra-high energy cosmic and gamma rays, testing new hypotheses of hadronic interaction or cross-calibration of different experiments. KASCADE (Karlsruhe, Germany) and TAIGA (Tunka valley, Russia) are experiments in the field of astroparticle physics, aiming at the detection of cosmic-ray air-showers, induced by the primaries in the energy range of about hundreds TeVs to hundreds PeVs. They are located at the same latitude and have an overlap in operation runs. These factors determine the interest in performing a joint analysis of these data. In the German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI), modern technologies of the distributed data management are being employed for establishing a reliable open access to the experimental cosmic-ray physics data collected by KASCADE and the Tunka-133 setup of TAIGA.
Recent measurement studies show that there are massively distributed hosting and computing infrastructures deployed in the Internet. Such infrastructures include large data centers and organizations computing clusters. When idle, these resources can readily serve local users. Such users can be smartphone or tablet users wishing to access services such as remote desktop or CPU/bandwidth intensive activities. Particularly, when they are likely to have high latency to access, or may have no access at all to, centralized cloud providers. Today, however, there is no global marketplace where sellers and buyers of available resources can trade. The recently introduced marketplaces of Amazon and other cloud infrastructures are limited by the network footprint of their own infrastructures and availability of such services in the target country and region. In this article we discuss the potentials for a federated cloud marketplace where sellers and buyers of a number of resources, including storage, computing, and network bandwidth, can freely trade. This ecosystem can be regulated through brokers who act as service level monitors and auctioneers. We conclude by discussing the challenges and opportunities in this space.
We present multi-wavelength follow-up campaigns by the AstroSat-CZTI and GROWTH collaborations to search for an electromagnetic counterpart to the gravitational wave event GW170104. At the time of the GW170104 trigger, the AstroSat CZTI field-of-view covered 50.3% of the sky localization. We do not detect any hard X-ray (>100 keV) signal at this time, and place an upper limit of $approx 4.5 times 10^{-7}~{rm erg~cm}^{-2}{rm~s}^{-1}$ for a 1,s timescale. Separately, the ATLAS survey reported a rapidly fading optical source dubbed ATLAS17aeu in the error circle of GW170104. Our panchromatic investigation of ATLAS17aeu shows that it is the afterglow of an unrelated long, soft GRB~170105A, with only a fortuitous spatial coincidence with GW170104. We then discuss the properties of this transient in the context of standard long GRB afterglow models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا