ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel-sequencing of early-type and spiral galaxies

97   0   0.0 ( 0 )
 نشر من قبل Michele Cappellari
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies (ETGs) have been regarded as two distinct families. The spirals are characterized by the presence of disks of stars and gas in rapid rotation, while the early-types are gas poor and described as spheroidal systems, with less rotation and often non-axisymmetric shapes. The separation is physically relevant as it implies a distinct path of formation for the two classes of objects. I will give an overview of recent findings, from independent teams, that motivated a radical revision to Hubbles classic view of ETGs. These results imply a much closer link between spiral galaxies and ETGs than generally assumed.



قيم البحث

اقرأ أيضاً

Stellar density and bar strength should affect the temperatures of the cool (T ~ 20-30 K) dust component in the inner regions of galaxies, which implies that the ratio of temperatures in the circumnuclear regions to the disk should depend on Hubble t ype. We investigate the differences between cool dust temperatures in the central 3 kpc and disk of 13 nearby galaxies by fitting models to measurements between 70 and 500 microns. We attempt to quantify temperature trends in nearby disk galaxies, with archival data from Spitzer/MIPS and new observations with Herschel/SPIRE, which were acquired during the first phases of the Herschel observations for the KINGFISH (key insights in nearby galaxies: a far-infrared survey with Herschel) sample. We fit single-temperature modified blackbodies to far-infrared and submillimeter measurements of the central and disk regions of galaxies to determine the temperature of the component(s) emitting at those wavelengths. We present the ratio of central-region-to-disk-temperatures of the cool dust component of 13 nearby galaxies as a function of morphological type. We find a significant temperature gradient in the cool dust component in all galaxies, with a mean center-to-disk temperature ratio of 1.15 +/- 0.03. The cool dust temperatures in the central ~3 kpc of nearby galaxies are 23(+/-3)% hotter for morphological types earlier than Sc, and only 9(+/-3)% hotter for later types. The temperature ratio is also correlated with bar strength, with only strongly barred galaxies having a ratio over 1.2. The strong radiation field in the high stellar density of a galactic bulge tends to heat the cool dust component to higher temperatures, at least in early-type spirals with relatively large bulges, especially when paired with a strong bar.
We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions h ave been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two different kinematical components in the ionized gas of the regions. The narrow component of the two-component Gaussian fits seem to have a relatively constant value for all the studied CNSFRs, with estimated values close to 25 km/s. This narrow component could be identified with ionized gas in a rotating disc, while the stars and the fraction of the gas (responsible for the broad component) related to the star-forming regions would be mostly supported by dynamical pressure.
We demonstrate that the comparison of Tully-Fisher relations (TFRs) derived from global HI line widths to TFRs derived from the circular velocity profiles of dynamical models (or stellar kinematic observations corrected for asymmetric drift) is vulne rable to systematic and uncertain biases introduced by the different measures of rotation used. We therefore argue that to constrain the relative locations of the TFRs of spiral and S0 galaxies, the same tracer and measure must be used for both samples. Using detailed near-infrared imaging and the circular velocities of axisymmetric Jeans models of 14 nearby edge-on Sa-Sb spirals and 14 nearby edge-on S0s drawn from a range of environments, we find that S0s lie on a TFR with the same slope as the spirals, but are on average 0.53+/-0.15 mag fainter at Ks-band at a given rotational velocity. This is a significantly smaller offset than that measured in earlier studies of the S0 TFR, which we attribute to our elimination of the bias associated with using different rotation measures and our use of earlier type spirals as a reference. Since our measurement of the offset avoids systematic biases, it should be preferred to previous estimates. A spiral stellar population in which star formation is truncated would take ~1 Gyr to fade by 0.53 mag at Ks-band. If S0s are the products of a simple truncation of star formation in spirals, then this finding is difficult to reconcile with the observed evolution of the spiral/S0 fraction with redshift. Recent star formation could explain the observed lack of fading in S0s, but the offset of the S0 TFR persists as a function of both stellar and dynamical mass. We show that the offset of the S0 TFR could therefore be explained by a systematic difference between the total mass distributions of S0s and spirals, in the sense that S0s need to be smaller or more concentrated than spirals.
89 - C. Chiappini 2001
We analyze new measurements of the Mg_2 central line strength index and velocity dispersion (sigma) for the galaxies of the ENEAR survey. The observations are now complete (da Costa et al. 2000) and the sample contains 1223 early-type galaxies. We al so analyze the line strength indices for a sample of 95 spiral bulges (from Sa to Sbc). For the early-type galaxies we find: i) that the Mg_2-sigma relation for Es and S0s are nearly the same, with both populations showing comparable scatter, and ii) a marginal difference in the slope of the Mg_2-sigma relation for cluster and field early-type galaxies. However, we suggest that before interpreting such a difference in the framework of a mass-metallicity relation, it is important to take into account the effects of rotation in the Mg_2-sigma relation. Our preliminary results indicate that once the rotation effects are minimized by choosing a sample containing only slow rotators, the Mg_2-sigma relation is similar both for isolated and clustered galaxies. More data on rotational velocities of early-type galaxies are needed to confirm this result. For spiral bulges, we find that their locus in the Mg_2-sigma plane lies always below the one occupied by early-type galaxies.
182 - Z. L. Wen , J. L. Han , F. S. Liu 2009
We have made a careful selection of a large complete volume-limited sample (1209) of projected close pairs (7<r_p<50 kpc) of luminous early-type galaxies (M_r<-21.5) in the local universe (z<0.12) from the SDSS data. 249 (21%) of them show interactio n features, which suggests that about 0.8% of the galaxies are merging. We derived a comoving volume merger rate of ~(1.0+/-0.4)times 10^{-5} Mpc^{-3} Gyr^{-1} for luminous early-type galaxies. This is a direct observational determination of the merger rate of luminous galaxies in the local universe. We also obtained the chirp mass distribution of supermassive black hole (SMBH) binary following log[Phi(log M /M_{odot})]=(21.7+/-4.2)-(3.0+/-0.5)log M/M_{odot}. With less assumptions than previous works, we estimated the strain amplitude of the gravitational wave (GW) background from coalescence of SMBH binaries at frequency 10^{-9}-10^{-7} Hz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا