ﻻ يوجد ملخص باللغة العربية
Regular groups and fields are common generalizations of minimal and quasi-minimal groups and fields, so the conjectures that minimal or quasi-minimal fields are algebraically closed have their common generalization to the conjecture that each regular field is algebraically closed. Standard arguments show that a generically stable regular field is algebraically closed. Let $K$ be a regular field which is not generically stable and let $p$ be its global generic type. We observe that if $K$ has a finite extension $L$ of degree $n$, then $p^{(n)}$ has unbounded orbit under the action of the multiplicative group of $L$. Known to be true in the minimal context, it remains wide open whether regular, or even quasi-minimal, groups are abelian. We show that if it is not the case, then there is a counter-example with a unique non-trivial conjugacy class, and we notice that a classical group with one non-trivial conjugacy class is not quasi-minimal, because the centralizers of all elements are uncountable. Then we construct a group of cardinality $omega_1$ with only one non-trivial conjugacy class and such that the centralizers of all non-trivial elements are countable.
We study superstable groups acting on trees. We prove that an action of an $omega$-stable group on a simplicial tree is trivial. This shows that an HNN-extension or a nontrivial free product with amalgamation is not $omega$-stable. It is also shown t
We deal with some pcf investigations mostly motivated by abelian group theory problems and deal their applications to test problems (we expect reasonably wide applications). We prove almost always the existence of aleph_omega-free abelian groups with
The present survey aims at being a list of Conjectures and Problems in an area of model-theoretic algebra wide open for research, not a list of known results. To keep the text compact, it focuses on structures of finite Morley rank, although the same
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifica
We prove that the theory of the $p$-adics ${mathbb Q}_p$ admits elimination of imaginaries provided we add a sort for ${rm GL}_n({mathbb Q}_p)/{rm GL}_n({mathbb Z}_p)$ for each $n$. We also prove that the elimination of imaginaries is uniform in $p$.