ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural networks using two-component Bose-Einstein condensates

150   0   0.0 ( 0 )
 نشر من قبل Tim Byrnes
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The authors previously considered a method solving optimization problems by using a system of interconnected network of two component Bose-Einstein condensates (Byrnes, Yan, Yamamoto New J. Phys. 13, 113025 (2011)). The use of bosonic particles was found to give a reduced time proportional to the number of bosons N for solving Ising model Hamiltonians by taking advantage of enhanced bosonic cooling rates. In this paper we consider the same system in terms of neural networks. We find that up to the accelerated cooling of the bosons the previously proposed system is equivalent to a stochastic continuous Hopfield network. This makes it clear that the BEC network is a physical realization of a simulated annealing algorithm, with an additional speedup due to bosonic enhancement. We discuss the BEC network in terms of typical neural network tasks such as learning and pattern recognition and find that the latter process may be accelerated by a factor of N.

قيم البحث

اقرأ أيضاً

We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between two BECs and that the effect is robust. We demonstrate it in 1D, 2D and 3D at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.
61 - Tim Byrnes 2013
Spin coherent states are the matter equivalent of optical coherent states, where a large number of two component particles form a macroscopic state displaying quantum coherence. Here we give a detailed study of entanglement generated between two spin -1/2 BECs due to an Sz1 Sz2 interaction. The states that are generated show a remarkably rich structure showing fractal characteristics. In the limit of large particle number N, the entanglement shows a strong dependence upon whether the entangling gate times are a rational or irrational multiple of pi/4. We discuss the robustness of various states under decoherence and show that despite the large number of particles in a typical BEC, entanglement on a macroscopic scale should be observable as long as the gate times are less than hbar/J sqrt[N], where J is the effective BEC-BEC coupling energy. Such states are anticipated to be useful for various quantum information applications such as quantum teleportation and quantum algorithms.
We experimentally and theoretically study phase coherence in two-component Bose-Einstein condensates of $^{87}{rm Rb}$ atoms on an atom chip. Using Ramsey interferometry we measure the temporal decay of coherence between the $|F=1,m_{F}=-1rangle$ and $|F=2,m_{F}=+1rangle$ hyperfine ground states. We observe that the coherence is limited by random collisional phase shifts due to the stochastic nature of atom loss. The mechanism is confirmed quantitatively by a quantum trajectory method based on a master equation which takes into account collisional interactions, atom number fluctuations, and losses in the system. This decoherence process can be slowed down by reducing the density of the condensate. Our findings are relevant for experiments on quantum metrology and many-particle entanglement with Bose-Einstein condensates and the development of chip-based atomic clocks.
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part icles, thus can be considered to be a macroscopic qubit. One of the difficulties with such a system is how to effectively interact such qubits together in order to transfer quantum information and create entanglement. Here we propose a scheme of cavities containing spinor BECs coupled by optical fiber in order to achieve this task. We discuss entanglement generation and quantum state transfer between nodes using such macroscopic BEC qubits.
243 - M. Abad , A. Recati 2013
We present a self-consistent study of coherently coupled two-component Bose-Einstein condensates. Finite spin-flipping coupling changes the first order demixing phase transition for Bose-Bose mixtures to a second order phase transition between an unp olarized and a polarized state. We analise the excitation spectrum and the structure factor along the transition for a homogeneous system. We discuss the main differences at the transition between a coherent coupled gas and a two-component mixture. We finally study the ground state when spin-(in)dependent trapping potentials are added to the system, focusing on optical lattices, which give rise to interesting new configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا