ترغب بنشر مسار تعليمي؟ اضغط هنا

The rotation rates of massive stars: the role of binary interaction through tides, mass transfer and mergers

53   0   0.0 ( 0 )
 نشر من قبل Selma E. de Mink
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rotation is thought to be a major factor in the evolution of massive stars, especially at low metallicity, with consequences for their chemical yields, ionizing flux and final fate. Determining the natal rotation-rate distribution of stars is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local Universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20^+5_-10% of all massive main-sequence stars have projected rotational velocities in excess of 200km/s. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

قيم البحث

اقرأ أيضاً

The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, X-ray binaries and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. Over seventy per cent of all massive stars will exchange mass with a companion, leading to a binary merger in one third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
167 - Jorick S. Vink 2014
We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.
As the number of observed merging binary black holes (BHs) grows, accurate models are required to disentangle multiple formation channels. In models with isolated binaries, important uncertainties remain regarding the stability of mass transfer (MT) and common-envelope (CE) evolution. To study some of these uncertainties, we have computed simulations using MESA of a $30M_odot$, low metallicity ($Z_odot/10$) star with a BH companion. We developed a prescription to compute MT rates including possible outflows from outer Lagrangian points, and a method to self-consistently determine the core-envelope boundary in the case of CE evolution. We find that binaries survive a CE only if unstable MT happens after the formation of a deep convective envelope, resulting in a narrow range (0.2 dex) in period for envelope ejection. All cases where interaction is initiated with a radiative envelope have large binding energies ($sim 10^{50}$ erg), and merge during CE even under the assumption that all the internal and recombination energy of the envelope, as well as the energy from an inspiral, is used for ejection. This is independent of core helium ignition for the donor, a condition under which various rapid-population synthesis calculations assume a successful ejection is possible. Moreover, we find that the critical mass ratio for instability is such that for periods between $sim 1-1000$ days merging binary BHs can be formed via stable MT. A large fraction of these systems overflow their L$_2$ equipotential, in which case we find stable MT produces merging binary BHs even under extreme assumptions of mass and angular momentum outflows. Our conclusions are limited to the study of one donor star, but suggest that population synthesis calculations overestimate the formation rate of merging binary BHs produced by CE evolution, and that stable MT could dominate the rate from isolated binaries.
We present multi-epoch spectroscopic observations of the massive binary system WR21a, which include the January 2011 periastron passage. Our spectra reveal multiple SB2 lines and facilitate an accurate determination of the orbit and the spectral type s of the components. We obtain minimum masses of $64.4pm4.8 M_{odot}$ and $36.3pm1.7 M_{odot}$ for the two components of WR21a. Using disentangled spectra of the individual components, we derive spectral types of O3/WN5ha and O3Vz~((f*)) for the primary and secondary, respectively. Using the spectral type of the secondary as an indication for its mass, we estimate an orbital inclination of $i=58.8pm2.5^{mathrm{o}}$ and absolute masses of $103.6pm10.2 M_{odot}$ and $58.3pm3.7 M_{odot}$, in agreement with the luminosity of the system. The spectral types of the WR21a components indicate that the stars are very young (1$-$2 Myr), similar to the age of the nearby Westerlund 2 cluster. We use evolutionary tracks to determine the mass-luminosity relation for the total system mass. We find that for a distance of 8 kpc and an age of 1.5 Myr, the derived absolute masses are in good agreement with those from evolutionary predictions.
Magnetic fields are ubiquitous in the Universe. The Suns magnetic field drives the solar wind and causes solar flares and other energetic surface phenomena that profoundly affect space weather here on Earth. The first magnetic field in a star other t han the Sun was detected in 1947 in the peculiar A-type star 78 Vir. It is now known that the magnetic fields of the Sun and other low-mass stars (<1.5 solar masses) are generated in-situ by a dynamo process in their turbulent, convective envelopes. Unlike such stars, intermediate-mass and high-mass stars (>1.5 solar masses; referred to as massive stars here) have relatively quiet, radiative envelopes where a solar-like dynamo cannot operate. However, about 10% of them, including 78 Vir, have strong, large-scale surface magnetic fields whose origin has remained a major mystery. The massive star $tau$ Sco is a prominent member of this group and appears to be surprisingly young compared to other presumably coeval members of the Upper Scorpius association. Here, we present the first 3D magneto-hydrodynamical simulations of the coalescence of two massive main-sequence stars and 1D stellar evolution computations of the subsequent evolution of the merger product that can explain $tau$ Scos magnetic field, apparent youth and other observed characteristics. We argue that field amplification in stellar mergers is a general mechanism to form strongly-magnetised massive stars. These stars are promising progenitors of those neutron stars that host the strongest magnetic fields in the Universe, so-called magnetars, and that may give rise to some of the enigmatic fast radio bursts. Strong magnetic fields affect the explosions of core-collapse supernovae and, moreover, those magnetic stars that have rapidly-rotating cores at the end of their lives might provide the right conditions to power long-duration gamma-ray bursts and super-luminous supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا