ﻻ يوجد ملخص باللغة العربية
We question whether the measurement based quantum computing algorithm is in fact Grovers algorithm or simply a similar oracular search method. The two algorithms share several qualitative features especially in the case of the trivial 4 element search, which is the largest size photonic search algorithm that has been experimentally implemented to date. This has led some to refer to both substantiations as Grovers algorithm. We compare multiple features of the two algorithms including the behavior of the oracle tags and the entanglement dynamics, both qualitatively and quantitatively. We find significant and fundamental differences in the operation of the two algorithms, particularly in cases involving searches on more than four elements.
We find that the Measurement Based Quantum Computing (MBQC) search algorithm on an unsorted list is not the same as Grovers search algorithm (GSA).
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the corre
There are major advantages in a newer version of Grovers quantum algorithm utilizing a general unitary transformation in the search of a single object in a large unsorted database. In this paper, we generalize this algorithm to multiobject search. We