ترغب بنشر مسار تعليمي؟ اضغط هنا

Rise and Fall of Radio Halos in Simulated Merging Galaxy Clusters

198   0   0.0 ( 0 )
 نشر من قبل Julius Donnert
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first high resolution MHD simulation of cosmic-ray electron reacceleration by turbulence in cluster mergers. We use an idealised model for cluster mergers, combined with a numerical model for the injection, cooling and reacceleration of cosmic-ray electrons, to investigate the evolution of cluster scale radio emission in these objects. In line with theoretical expectations, we for the first time, show in a simulation that reacceleration of CRe has the potential to reproduce key observables of radio halos. In particular, we show that clusters evolve being radio loud or radio quiet, depending on their evolutionary stage during the merger. We thus recover the observed transient nature of radio halos. In the simulation the diffuse emission traces the complex interplay between spatial distribution of turbulence injected by the halo infall and the spatial distribution of the seed electrons to reaccelerate. During the formation and evolution of the halo the synchrotron emission spectra show the observed variety: from power-laws with spectral index of 1 to 1.3 to curved and ultra-steep spectra with index $> 1.5$.

قيم البحث

اقرأ أيضاً

75 - Eric J. Hallman 2011
We track the histories of massive clusters of galaxies formed within a cosmological hydrodynamic simulation. Specifically, we track the time evolution of the energy in random bulk motions of the intracluster medium and X-ray measures of cluster struc ture and their relationship to cluster mergers. We aim to assess the viability of the turbulent re-acceleration model for the generation of giant radio halos by comparing the level of turbulent kinetic energy in simulated clusters with the observed properties of radio halo clusters, giving particular attention to the association of radio halos to clusters with disturbedX-ray structures. The evolution of X-ray cluster structure and turbulence kinetic energy, k, in simulations can then inform us about the expected lifetime of radio halos and the fraction of clusters as a function of redshift expected to host them. We find strong statistical correlation of disturbed structure measures and the presence of enhancements in k. Specifically, quantitatively disturbed, radio halo-like X-ray morphology in our sample indicates a 92% chance of the cluster in question having k elevated to more than twice its minimum value over the clusters life. The typical lifetime of episodes of elevated turbulence is on the order of 1 Gyr, though these periods can last 5 Gyrs or more. This variation reflects the wide range of cluster histories; while some clusters undergo complex and repeated mergers spending a majority of their time in elevated k states, other clusters are relaxed over nearly their entire history. We do not find a bimodal relationship between cluster X-ray luminosity and the total energy in turbulence that might account directly for a bimodal L_X-P_{1.4 GHz} relation. However, our result may be consistent with the observed bimodality, as here we are not including a full treatment of cosmic rays sources and magnetic fields.
84 - Amitesh Omar 2019
A possibility of generating a population of cosmic-ray particles accelerated in supernovae typeIa (SNIa) remnants in the intracluster medium (ICM) is discussed. The presently constrained host-less SNIa rates in the clusters are found to be sufficient to fill a few hundred kpc region with cosmic-ray electrons within their typical synchrotron life-time of 100 Myr. The SNIa have already been considered potential sources of excess Fe abundance in cool-core clusters, distributed heating and turbulence in ICM. A good fraction of total radio power from mini-halos can be sourced from the SNIa energy deposited in the ICM with required energy conversion efficiency <1 per cent. The radio power estimated from low Mach number shock acceleration in SNIa remnants is consistent with the observations within the uncertainties in the estimates. Some observational properties of the radio mini-halos are broadly consistent with the SNIa scenario. It is also speculated that radio powers and possibly detections of mini-halos are linked to star formation and merger histories of the clusters.
132 - Fabio Zandanel 2013
The underlying physics of giant and mini radio halos in galaxy clusters is still an open question. We find that mini halos (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR) interactions with protons of the intracluster medium. By contrast, the hadronic model either fails to explain the extended emission of giant radio halos (as in Coma at low frequencies) or would require a flat CR profile, which can be realized through outward streaming and diffusion of CRs (in Coma and A2163 at 1.4 GHz). We suggest that a second, leptonic component could be responsible for the missing flux in the outer parts of giant halos within a new hybrid scenario and we describe its possible observational consequences. To study the hadronic emission component of the radio halo population statistically, we use a cosmological mock galaxy cluster catalog built from the MultiDark simulation. Because of the properties of CR streaming and the different scalings of the X-ray luminosity (L_X) and the Sunyaev-Zeldovich flux (Y) with gas density, our model can simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same L_X as well as the unimodal distribution of radio-halo luminosity versus Y; thereby suggesting a physical solution to this apparent contradiction. We predict radio halo emission down to the mass scale of galaxy groups, which highlights the unique prospects for low-frequency radio surveys (such as the LOFAR Tier 1 survey) to increase the number of detected radio halos by at least an order of magnitude.
Multi-band photometric and multi-object spectroscopic surveys of merging galaxy clusters allow for the characterization of the distributions of constituent dark matter and galaxy populations, constraints on the dynamics of the merging subclusters, an d an understanding of galaxy evolution of member galaxies. We present deep photometric observations from Subaru/SuprimeCam and a catalog of $sim$5400 spectroscopic cluster members from Keck/DEIMOS across 29 merging galaxy clusters ranging in redshift from $z=0.07$ to $0.55$. The ensemble is compiled based on the presence of radio relics, which highlight cluster scale collisionless shocks in the intra-cluster medium. Together with the spectroscopic and photometric information, the velocities, timescales, and geometries of the respective merging events may be tightly constrained. In this preliminary analysis, the velocity distributions of 28 of the 29 clusters are shown to be well fit by single Gaussians. This indicates that radio relic mergers largely occur transverse to the line of sight and/or near apocenter. In this paper, we present our optical and spectroscopic surveys, preliminary results, and a discussion of the value of radio relic mergers for developing accurate dynamical models of each system.
We investigate the impact of mergers on the mass estimation of galaxy clusters using $N$-body + hydrodynamical simulation data. We estimate virial mass from these data and compare it with real mass. When the smaller subclusters mass is larger than a quarter of that of the larger one, virial mass can be larger than twice of the real mass. The results strongly depend on the observational directions, because of anisotropic velocity distribution of the member galaxies. We also make the X-ray surface brightness and spectroscopic-like temperature maps from the simulation data. The mass profile is estimated from these data on the assumption of hydrostatic equilibrium. In general, mass estimation with X-ray data gives us better results than virial mass estimation. The dependence upon observational directions is weaker than in case of virial mass estimation. When the system is observed along the collision axis, the projected mass tends to be underestimated. This fact should be noted especially when the virial and/or X-ray mass are compared with gravitational lensing results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا