ﻻ يوجد ملخص باللغة العربية
We present the first high resolution MHD simulation of cosmic-ray electron reacceleration by turbulence in cluster mergers. We use an idealised model for cluster mergers, combined with a numerical model for the injection, cooling and reacceleration of cosmic-ray electrons, to investigate the evolution of cluster scale radio emission in these objects. In line with theoretical expectations, we for the first time, show in a simulation that reacceleration of CRe has the potential to reproduce key observables of radio halos. In particular, we show that clusters evolve being radio loud or radio quiet, depending on their evolutionary stage during the merger. We thus recover the observed transient nature of radio halos. In the simulation the diffuse emission traces the complex interplay between spatial distribution of turbulence injected by the halo infall and the spatial distribution of the seed electrons to reaccelerate. During the formation and evolution of the halo the synchrotron emission spectra show the observed variety: from power-laws with spectral index of 1 to 1.3 to curved and ultra-steep spectra with index $> 1.5$.
We track the histories of massive clusters of galaxies formed within a cosmological hydrodynamic simulation. Specifically, we track the time evolution of the energy in random bulk motions of the intracluster medium and X-ray measures of cluster struc
A possibility of generating a population of cosmic-ray particles accelerated in supernovae typeIa (SNIa) remnants in the intracluster medium (ICM) is discussed. The presently constrained host-less SNIa rates in the clusters are found to be sufficient
The underlying physics of giant and mini radio halos in galaxy clusters is still an open question. We find that mini halos (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR)
Multi-band photometric and multi-object spectroscopic surveys of merging galaxy clusters allow for the characterization of the distributions of constituent dark matter and galaxy populations, constraints on the dynamics of the merging subclusters, an
We investigate the impact of mergers on the mass estimation of galaxy clusters using $N$-body + hydrodynamical simulation data. We estimate virial mass from these data and compare it with real mass. When the smaller subclusters mass is larger than a