ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of longitudinal activity complexes for solar and stellar dynamos

258   0   0.0 ( 0 )
 نشر من قبل Maarit Mantere
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. J. Mantere




اسأل ChatGPT حول البحث

In this paper we first discuss observational evidence of longitudinal concentrations of magnetic activity in the Sun and rapidly rotating late-type stars with outer convective envelopes. Scenarios arising from the idea of rotationally influenced anisotropic convective turbulence being the key physical process generating these structures are then presented and discussed - such effects include the turbulent dynamo mechanism, negative effective magnetic pressure instability (NEMPI) and hydrodynamical vortex instability. Finally, we discuss non-axisymmetric stellar mean-field dynamo models, the results obtained with them, and compare those with the observational information gathered up so far. We also present results from a pure alpha-squared mean-field dynamo model, which show that time-dependent behavior of the dynamo solutions can occur both in the form of an azimuthal dynamo wave and/or oscillatory behavior related to the alternating energy levels of the active longitudes.



قيم البحث

اقرأ أيضاً

Rotational shear layers at the boundary between radiative and convective zones, tachoclines, play a key role in the process of magnetic field generation in solar-like stars. We present two sets of global simulations of rotating turbulent convection a nd dynamo. The first set considers a stellar convective envelope only; the second one, aiming at the formation of a tachocline, considers also the upper part of the radiative zone. Our results indicate that the resulting mean-flows and dynamo properties like the growth rate, saturation energy and mode depend on the Rossby (Ro) number. For the first set of models either oscillatory (with ~2 yr period) or steady dynamo solutions are obtained. The models in the second set naturally develop a tachocline which, in turn, leads to the generation of strong mean magnetic field. Since the field is also deposited into the stable deeper layer, its evolutionary time-scale is much longer than in the models without a tachocline. Surprisingly, the magnetic field in the upper turbulent convection zone evolves in the same time scale as the deep field. These models result in either an oscillatory dynamo with ~30 yr period or in a steady dynamo depending on Ro. In terms of the mean-field dynamo coefficients computed using FOSA, the field evolution in the oscillatory models without a tachocline seems to be consistent with dynamo waves propagating according to the Parker-Yoshimura sign rule. In the models with tachoclines the dynamics is more complex involving other transport mechanisms as well as tachocline instabilities.
80 - G Guerrero 2020
The dynamo mechanism, responsible for the solar magnetic activity, is still an open problem in astrophysics. Different theories proposed to explain such phenomena have failed in reproducing the observational properties of the solar magnetism. Thus, a b-initio computational modeling of the convective dynamo in a spherical shell turns out as the best alternative to tackle this problem. In this work we review the efforts performed in global simulations over the past decades. Regarding the development and sustain of mean-flows, as well as mean magnetic field, we discuss the points of agreement and divergence between the different modeling strategies. Special attention is given to the implicit large-eddy simulations performed with the EULAG-MHD code.
Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process. However, the identification of solar-analog stars depends on the accuracy of the estimated stellar parameters. Thanks to the photometric CoROT and Kepler space missions, the addition of asteroseismic data was proven to provide the most accurate fundamental properties that can be derived from stellar modeling today. Here, we present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using the observations collected by the Kepler satellite and the ground-based, high-resolution HERMES spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity Sph (Salabert et al, 2016b). It could be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and in the 1-Gyr-old solar analog HD30495. In addition, the lithium abundance and the chromospheric activity estimated from HERMES confirms that KIC10644253 is a young and more active star than the Sun.
We study activity waves of the kind that determine cyclic magnetic activity of various stars, including the Sun, as a more general physical rather than a purely astronomical problem. We try to identify resonances which are expected to occur when a me an-field dynamo excites waves of quasi-stationary magnetic field in two distinct spherical layers. We isolate some features that can be associated with resonances in the profiles of energy or frequency plotted versus a dynamo governing parameter. Rather unexpectedly however the resonances in spherical dynamos take a much less spectacular form than resonances in many more familiar branches of physics. In particular, we find that the magnitudes of resonant phenomena are much smaller than seem detectable by astronomical observations, and plausibly any related effects in laboratory dynamo experiments (which of course are not in gravitating spheres!) are also small. We discuss specific features relevant to resonant phenomena in spherical dynamos, and find parametric resonance to be the most pronounced type of resonance phenomena. Resonance conditions for these dynamo wave resonances are rather different from those for more conventional branches of physics. We suggest that the relative insignificance of the phenomenon in this case is because the phenomena of excitation and propagation of the activity waves are not well-separated from each other and this, together with the nonlinear nature of more-or-less realistic dynamos, suppress the resonances and makes them much less pronounced than resonant effects, for example in optics.
176 - D. L. Moss , D.D. Sokoloff 2017
Observations of the solar butterfly diagram from sunspot records suggest persistent fluctuation in parity, away from the overall, approximately dipolar structure. We use a simple mean-field dynamo model with a solar-like rotation law, and perturb the $alpha$-effect. We find that the parity of the magnetic field with respect to the rotational equator can demonstrate what we describe as resonant behaviour, while the magnetic energy behaves in a more or less expected way. We discuss possible applications of the phenomena in the context of various deviations of the solar magnetic field from dipolar symmetry, as reported from analysis of archival sunspot data. We deduce that our model produces fluctuations in field parity, and hence in the butterfly diagram, that are consistent with observed fluctaions in solar behaviour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا