ﻻ يوجد ملخص باللغة العربية
We study cosmological consequences of the dark spinor model when torsion is included. Only some components of the torsion are allowed to be non-vanishing in homogeneous and isotropic cosmology, but there exist freedoms in the choice of these components which is consistent with the evolution equations. We exploit this and discuss several cases which can result in interesting cosmological consequences. Especially, we show that there exist exact cosmological solutions in which the Universe began its acceleration only recently and this solution is an attractor. This corresponds to a specific form of the torsion with a mild fine-tuning which can address the coincidence problem.
We extend the treatment of quantum cosmology to a manifold with torsion. We adopt a model of Einstein-Cartan-Sciama-Kibble compatible with the cosmological principle. The universe wavefunction will be subject to a $mathcal{PT}$-symmetric Hamiltonian.
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
A Friedmann like cosmological model in Einstein-Cartan framework is studied when the torsion function is assumed to be proportional to a single $phi(t)$ function coming just from the spin vector contribution of ordinary matter. By analysing four diff
We propose a generalizing gauge-invariant model of propagating torsion which couples to the Maxwell field and to charged particles. As a result we have an Abelian gauge invariant action which leads to a theory with nonzero torsion and which is consistent with available experimental data.
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represen