ﻻ يوجد ملخص باللغة العربية
In this paper we consider compact, Riemannian manifolds $M_1, M_2$ each equipped with a one-parameter family of metrics $g_1(t), g_2(t)$ satisfying the Ricci flow equation. Motivated by a characterization of the super Ricci flow developed by McCann-Topping, we introduce the notion of a super Ricci flow for a family of distance metrics defined on the disjoint union $MM$. In particular, we show such a super Ricci flow property holds provided the distance function between points in $M_1$ and $M_2$ evolves by the heat equation. We also discuss possible applications and examples.
In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions
In this paper, we study the singularities of two extended Ricci flow systems --- connection Ricci flow and Ricci harmonic flow using newly-defined curvature quantities. Specifically, we give the definition of three types of singularities and their co
Hamiltons Ricci flow (RF) equations were recently expressed in terms of the edge lengths of a d-dimensional piecewise linear (PL) simplicial geometry, for d greater than or equal to 2. The structure of the simplicial Ricci flow (SRF) equations are di
We construct a discrete form of Hamiltons Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einsteins theory of general relativity known as
This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and Kahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures