ﻻ يوجد ملخص باللغة العربية
The paper that is commented by Touchette contains a computational study which opens the door to a desirable generalization of the standard large deviation theory (applicable to a set of $N$ nearly independent random variables) to systems belonging to a special, though ubiquitous, class of strong correlations. It focuses on three inter-related aspects, namely (i) we exhibit strong numerical indications which suggest that the standard exponential probability law is asymptotically replaced by a power-law as its dominant term for large $N$; (ii) the subdominant term appears to be consistent with the $q$-exponential behavior typical of systems following $q$-statistics, thus reinforcing the thermodynamically extensive entropic nature of the exponent of the $q$-exponential, basically $N$ times the $q$-generalized rate function; (iii) the class of strong correlations that we have focused on corresponds to attractors in the sense of the Central Limit Theorem which are $Q$-Gaussian distributions (in principle $1 < Q < 3$), which relevantly differ from (symmetric) Levy distributions, with the unique exception of Cauchy-Lorentz distributions (which correspond to $Q = 2$), where they coincide, as well known. In his Comment, Touchette has agreeably discussed point (i), but, unfortunately, points (ii) and (iii) have, as we detail here, visibly escaped to his analysis. Consequently, his conclusion claiming the absence of special connection with $q$-exponentials is unjustified.
The theory of large deviations constitutes a mathematical cornerstone in the foundations of Boltzmann-Gibbs statistical mechanics, based on the additive entropy $S_{BG}=- k_Bsum_{i=1}^W p_i ln p_i$. Its optimization under appropriate constraints yiel
The standard Large Deviation Theory (LDT) represents the mathematical counterpart of the Boltzmann-Gibbs factor which describes the thermal equilibrium of short-range Hamiltonian systems, the velocity distribution of which is Maxwellian. It is generi
In two recent articles [PRL 90, 026802 (2003); PRB 69, 085307 (2004)], we developed a transport theory for an extended tunnel junction between two interacting fractional-quantum-Hall edge channels, obtaining analytical results for the conductance. Po
The theory of large deviations has been applied successfully in the last 30 years or so to study the properties of equilibrium systems and to put the foundations of equilibrium statistical mechanics on a clearer and more rigorous footing. A similar a
We reply to Comment by J. Gemmer, L. Knipschild, R. Steinigeweg (arXiv:1712.02128) on our paper Phys. Rev. Lett. 119, 100601 (2017).