ﻻ يوجد ملخص باللغة العربية
The metallic surface state of a topological insulator (TI) is not only topologically protected, but exhibits a remarkable property of inducing an effective vector potential on curved surfaces. For an electron in the surface state of a spherical or a cylindrical TI (TI nanoparticle or nanowire) a pseudo-magnetic monopole or a fictitious solenoid is effectively induced, encoding the geometry of the system. Here, by taking an example of a hyperbolic surface we demonstrate that as a consequence of this property stemming from its active spin degree of freedom, the surface state is by itself topologically protected.
Negative longitudinal magnetoresistance, in the presence of an external magnetic field parallel to the direction of an applied current, has recently been experimentally verified in Weyl semimetals and topological insulators in the bulk conduction lim
The edge states of a two-dimensional quantum spin Hall (QSH) insulator form a one-dimensional helical metal which is responsible for the transport property of the QSH insulator. Conceptually, such a one-dimensional helical metal can be attached to an
We investigate the spin and charge densities of surface states of the three-dimensional topological insulator $Bi_2Se_3$, starting from the continuum description of the material [Zhang {em et al.}, Nat. Phys. 5, 438 (2009)]. The spin structure on sur
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show t
The paper examines weak localization (WL) of surface states with a quadratic band crossing in topological crystalline insulators. It is shown that the topology of the quadratic band crossing point dictates the negative sign of the WL conductivity cor