ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of new microsecond isomers among fission products of 345 MeV/nucleon 238U

67   0   0.0 ( 0 )
 نشر من قبل Toshiyuki Kubo
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A search for isomeric gamma-decays among fission fragments from 345 MeV/nucleon 238U has been performed at the RIKEN Nishina Center RI Beam Factory. Fission fragments were selected and identified using the superconducting in-flight separator BigRIPS and were implanted in an aluminum stopper. Delayed gamma-rays were detected using three clover-type high-purity germanium detectors located at the focal plane within a time window of 20 microseconds following the implantation. We identified a total of 54 microsecond isomers with half-lives of ~0.1 - 10 microseconds, including discovery of 18 new isomers in very neutron-rich nuclei: 59Tim, 90Asm, 92Sem, 93Sem, 94Brm, 95Brm, 96Brm, 97Rbm, 108Nbm, 109Mom, 117Rum, 119Rum, 120Rhm, 122Rhm, 121Pdm, 124Pdm, 124Agm and 126Agm, and obtained a wealth of spectroscopic information such as half-lives, gamma-ray energies, gamma-ray relative intensities and gamma-gamma coincidences over a wide range of neutron-rich exotic nuclei. Proposed level schemes are presented for 59Tim, 82Gam, 92Brm, 94Brm, 95Brm, 97Rbm, 98Rbm, 108Nbm, 108Zrm, 109Mom, 117Rum, 119Rum, 120Rhm, 122Rhm, 121Pdm, 124Agm and 125Agm, based on the obtained spectroscopic information and the systematics in neighboring nuclei. Nature of the nuclear isomerism is discussed in relation to evolution of nuclear structure.

قيم البحث

اقرأ أيضاً

A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba.
The photofission cross-section of 238U was measured at sub-barrier energies as a function of the gamma-ray energy using, for the first time, a monochromatic, high-brilliance, Compton-backscattered gamma-ray beam. The experiment was performed at the H igh Intensity gamma-ray Source (HIgS) facility at beam energies between E=4.7 MeV and 6.0 MeV and with ~3% energy resolution. Indications of transmission resonances have been observed at gamma-ray beam energies of E=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped fission barrier parameters of 238U have been determined by fitting EMPIRE-3.1 nuclear reaction code calculations to the experimental photofission cross section.
Total cross sections for proton- and deuteron-induced-fission of 208Pb and 238U have been determined in the energy range between 500 MeV and 1 GeV. The experiment has been performed in inverse kinematics at GSI Darmstadt, facilitating the counting of the projectiles and the identification of the reaction products. High precision between 5 and 7 percent has been achieved by individually counting the beam particles and by registering both fission fragments in coincidence with high efficiency and full Z resolution. Fission was clearly distinguished from other reaction channels. The results were found to deviate by up to 30 percent from Prokofievs systematics on total fission cross sections. There is good agreement with an elaborate experiment performed in direct kinematics.
In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the $^{102;104;105;106;107}$Tc, $^{105}$Mo, and $^{101}$Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes $^{235, 238}$U, and $^{239,241}$Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the $gamma$ component of the decay heat of $^{239}$Pu, solving a large part of the $gamma$ discrepancy in the 4 to 3000,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of $^{235}$U, $^{239,241}$Pu and in particular of $^{238}$U for which no measurement has been published yet. We conclude that new TAS measurements are mandatory to improve the reliability of the predicted spectra.
We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا