ﻻ يوجد ملخص باللغة العربية
Diagnostics of electron temperature (T_e), electron density (n_e), and hydrogen column density (N_H) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 x 10^{-9} M_{odot} yr^{-1}, for a stellar magnetic field strength of 600 Gauss and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.
We present the first results from a long (496 ks) Chandra High Energy Transmission Grating observation of the intermediate polar EX Hydrae. In addition to the narrow emission lines from the cooling post-shock gas, for the first time we have detected
Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk cl
We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared exce
Solar flare hard X-ray spectroscopy serves as a key diagnostic of the accelerated electron spectrum. However, the standard approach using the collisional cold thick-target model poorly constrains the lower-energy part of the accelerated electron spec
The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here we determined