ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing W+W-gamma Production and Anomalous Quartic Gauge Boson Couplings at the CERN LHC

435   0   0.0 ( 0 )
 نشر من قبل Qiang Li
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Triple gauge boson associated production at the LHC serves as an interesting channel to test the robustness of the Standard Model. Any deviation from its SM prediction may indicate possible existence of relevant new physics, e.g., anomalous quartic gauge boson couplings. In this paper, a Monte-Carlo feasibility study of measuring WWA production with pure leptonic decays and probing anomalous quartic gauge-boson (e.g., WWAA) couplings, is presented in detail for the first time, with parton shower and detector simulation effects taken into account. Our results show that at the sqrt{s} = 14 TeV LHC with an integrated luminosity of 100 (30) fb-1, one can reach a significance of 9 (5) sigma to observe the SM WWA production, and can constrain at the 95% CL the anomalous WWAA coupling parameters, e.g., a_{0,c}^W/Lambda^2 (see Ref.[15] for their definitions), at 10^{-5} GeV^{-2}, respectively.


قيم البحث

اقرأ أيضاً

159 - A.Denner , S.Dittmaier , M.Roth 2001
All lowest-order amplitudes for e+e- --> 4f+gamma are calculated including five anomalous quartic gauge-boson couplings that are allowed by electromagnetic gauge invariance and the custodial SU(2)_c symmetry. Three of these anomalous couplings corres pond to the operators L_0, L_c, and L_n that have been constrained by the LEP collaborations in WWgamma production. The anomalous couplings are incorporated in the Monte Carlo generator RACOONWW. Moreover, for the processes e+e- --> 4f+gamma RACOONWW is improved upon including leading universal electroweak corrections such as initial-state radiation. The discussion of numerical results illustrates the size of the leading corrections as well as the impact of the anomalous quartic couplings for LEP2 energies and at 500GeV.
169 - Shuai Liu , Yajun Mao , Yong Ban 2012
TeV scale new Physics, e.g., Large Extra Dimensions or Models with anomalous triple vector boson couplings, can lead to excesses in various kinematic regions on the semi-leptonic productions of pp -> WW -> lvjj at the CERN LHC, which, although suffer s from large QCD background compared with the pure leptonic channel, can benefit from larger production rates and the reconstructable 4-body mass Mlvjj. We study the search sensitivity through the lvjj channel at the 7TeV LHC on relevant new physics, via probing the hard tails on the reconstructed Mlvjj and the transverse momentum of W-boson (PTW), taking into account main backgrounds and including the parton shower and detector simulation effects. Our results show that with integrated luminosity of 5fb-1, the LHC can already discovery or exclude a large parameter region of the new physics, e.g., 95% CL. limit can be set on the Large Extra Dimensions with a cut-off scale up to 1.5 TeV, and the WWZ anomalous coupling down to, e.g. |lambda_Z|~0.1. Brief results are also given for the 8TeV LHC.
In this work, Higgs couplings with gauge bosons is probed through $e^-e^+ rightarrow W^-W^+H$ in an effective Lagrangian framework. An ILC of 500 $GeV$ center of mass energy with possible beam polarization is considered for this purpose. The reach of ILC with integrated luminosity of 300 $fb^{-1}$ in the determination of both the CP-conserving and CP-violating parameters are obtained. Sensitivity of the probe of each of these couplings on the presence of other couplings is investigated. The most influential couplings parameters are $bar c_W=-bar c_B$. Other parameters of significant effect are $bar c_{HW}$ and $bar c_{HB}$ among the CP-conserving ones, and $tilde c_{HW}$ and $tilde c_{HB}$ among the CP-violating ones. CP-violating parameter, $tilde c_gamma$ seems to have very little influence on the process considered. Detailed study of the angular distributions have presented a way to disentangle the effect of some of these couplings.
The vector boson scattering at the Large Hadron Collider (LHC) is sensitive to anomalous quartic gauge couplings (aQGCs). In this paper, we investigate the aQGC contribution to $ W gamma jj$ production at the LHC with $sqrt{s}=13$ TeV in the context of an effective field theory (EFT). The unitarity bound is applied as a cut on the energy scale of this production process, which is found to have significant suppressive effects on the signals. To enhance the statistical significance, we analyse the kinematic and polarization features of the aQGC signals in detail. We find that the polarization effects induced by the aQGCs are unique and can discriminate the signals from the SM backgrounds well. With the proposed event selection strategy, we obtain the constraints on the coefficients of dimension-8 operators with current luminosity. The results indicate that the process $pp to W gamma jj$ is powerful for searching for the $O_{M_{2,3,4,5}}$ and $O_{T_{5,6,7}}$ operators.
In this paper, we investigate the contributions of anomalous quartic gauge couplings (aQGCs) to $Zgamma jj$ production at the Large Hadron Collider (LHC) in the context of Standard Model effective theory (SMEFT). When energy scale is large, the valid ity of SMEFT becomes an important issue. To ensure the validity, the unitarity bound is applied in a model independent approach, which is found to have significant suppressive effects on the signals of $O_{M_i}$ operators. The kinematic and polarization features of the aQGC signals are also studied. The polarization effect is useful to highlight the signals of $O_{T_i}$ operators. The sensitivity estimates on dimension-8 operators with unitarity bounds at $sqrt{s}=14$ TeV are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا