ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise characterization of ^6Li Feshbach resonances using trap-sideband resolved RF spectroscopy of weakly bound molecules

275   0   0.0 ( 0 )
 نشر من قبل Gerhard Z\\\"urn
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed radio-frequency dissociation spectroscopy of weakly bound ^6Li_2 Feshbach molecules using low-density samples of about 30 molecules in an optical dipole trap. Combined with a high magnetic field stability this allows us to resolve the discrete trap levels in the RF dissociation spectra. This novel technique allows the binding energy of Feshbach molecules to be determined with unprecedented precision. We use these measurements as an input for a fit to the ^6Li scattering potential using coupled-channel calculations. From this new potential, we determine the pole positions of the broad ^6Li Feshbach resonances with an accuracy better than 7 times 10^{-4} of the resonance widths. This eliminates the dominant uncertainty for current precision measurements of the equation of state of strongly interacting Fermi gases. For example, our results imply a corrected value for the Bertsch parameter xi measured by Ku et al. [Science 335, 563 (2012)], which is xi = 0.370(5)(8).



قيم البحث

اقرأ أيضاً

We report on the observation of dipolar splitting in 6Li p-wave Feshbach resonances by highresolution atom-loss spectroscopy. The Feshbach resonances at 159 G and 215 G exhibit a doublet structure of 10 mG and 13 mG, respectively, associated with dif ferent projections of the orbital angular momentum. The observed splittings agree very well with coupled-channel calculations. We map out the temperature dependence of the atom-loss spectrum allowing us to extrapolate resonance positions and the corresponding widths to zero temperature. The observed dipolar splitting in fermionic lithium might be useful for the realization of the quantum phase transition between the polar and axial p-wave superfluid phases.
We present an Asymptotic Bound-state Model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body Hamiltonian, and on asymptotic properties of uncoupled bound states in the interaction potentials. In its most simple version, the only necessary parameters are the least bound state energies and actual potentials are not used. The complexity of the model can be stepwise increased by introducing threshold effects, multiple vibrational levels and additional potential parameters. The model is extensively tested on the 6Li-40K system and additional calculations on the 40K-87Rb system are presented.
Ultracold molecules have experienced increasing attention in recent years. Compared to ultracold atoms, they possess several unique properties that make them perfect candidates for the implementation of new quantum-technological applications in sever al fields, from quantum simulation to quantum sensing and metrology. In particular, ultracold molecules of two-electron atoms (such as strontium or ytterbium) also inherit the peculiar properties of these atomic species, above all the possibility to access metastable electronic states via direct excitation on optical clock transitions with ultimate sensitivity and accuracy. In this paper we report on the production and coherent manipulation of molecular bound states of two fermionic $^{173}$Yb atoms in different electronic (orbital) states $^1$S$_0$ and $^3$P$_0$ in proximity of a scattering resonance involving atoms in different spin and electronic states, called orbital Feshbach resonance. We demonstrate that orbital molecules can be coherently photoassociated starting from a gas of ground-state atoms in a three-dimensional optical lattices by observing several photoassociation and photodissociation cycles. We also show the possibility to coherently control the molecular internal state by using Raman-assisted transfer to swap the nuclear spin of one of the atoms forming the molecule, thus demonstrating a powerful manipulation and detection tool of these molecular bound states. Finally, by exploiting this peculiar detection technique we provide first information on the lifetime of the molecular states in a many-body setting, paving the way towards future investigations of strongly interacting Fermi gases in a still unexplored regime.
Magnetically tunable Feshbach resonances were employed to associate cold diatomic molecules in a series of experiments involving both atomic Bose as well as two spin component Fermi gases. This review illustrates theoretical concepts of both the part icular nature of the highly excited Feshbach molecules produced and the techniques for their association from unbound atom pairs. Coupled channels theory provides the rigorous formulation of the microscopic physics of Feshbach resonances in cold gases. Concepts of dressed versus bare energy states, universal properties of Feshbach molecules, as well as the classification in terms of entrance- and closed-channel dominated resonances are introduced on the basis of practical two-channel approaches. Their significance is illustrated for several experimental observations, such as binding energies and lifetimes with respect to collisional relaxation. Molecular association and dissociation are discussed in the context of techniques involving linear magnetic field sweeps in cold Bose and Fermi gases as well as pulse sequences leading to Ramsey-type interference fringes. Their descriptions in terms of Landau-Zener, two-level mean field as well as beyond mean field approaches are reviewed in detail, including the associated ranges of validity.
We report evidence for spin-rotation coupling in $p$-wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs lifting the commonly observed degeneracy of states with equal absolute value of orbital-angular-momentum projection on the external magnetic field. By employing magnetic field dependent atom-loss spectroscopy we find triplet structures in $p$-wave resonances. Comparison with coupled-channel calculations, including contributions from both spin-spin and spin-rotation interactions, yields a spin-rotation coupling parameter $|gamma|=0.566(50)times10^{-3}$. Our findings highlight the potential of Feshbach resonances in revealing subtle molecular couplings and providing precise information on electronic and nuclear wavefunctions, especially at short internuclear distance. The existence of a non-negligible spin-rotation splitting may have consequences for future classifications of $p$-wave superfluid phases in spin-polarized fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا