ترغب بنشر مسار تعليمي؟ اضغط هنا

Local-Density Driven Clustered Star Formation

321   0   0.0 ( 0 )
 نشر من قبل Genevieve Parmentier
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A positive power-law trend between the local surface densities of molecular gas, $Sigma_{gas}$, and young stellar objects, $Sigma_{star}$, in molecular clouds of the Solar Neighbourhood has been identified by Gutermuth et al. How it relates to the properties of embedded clusters, in particular to the recently established radius-density relation, has so far not been investigated. In this paper, we model the development of the stellar component of molecular clumps as a function of time and initial local volume density so as to provide a coherent framework able to explain both the molecular-cloud and embedded-cluster relations quoted above. To do so, we associate the observed volume density gradient of molecular clumps to a density-dependent free-fall time. The molecular clump star formation history is obtained by applying a constant SFE per free-fall time, $eff$. For volume density profiles typical of observed molecular clumps (i.e. power-law slope $simeq -1.7$), our model gives a star-gas surface-density relation $Sigma_{star} propto Sigma_{gas}^2$, in very good agreement with the Gutermuth et al relation. Taking the case of a molecular clump of mass $M_0 simeq 10^4 Msun$ and radius $R simeq 6 pc$ experiencing star formation during 2 Myr, we derive what SFE per free-fall time matches best the normalizations of the observed and predicted ($Sigma_{star}$, $Sigma_{gas}$) relations. We find $eff simeq 0.1$. We show that the observed growth of embedded clusters, embodied by their radius-density relation, corresponds to a surface density threshold being applied to developing star-forming regions. The consequences of our model in terms of cluster survivability after residual star-forming gas expulsion are that due to the locally high SFE in the inner part of star-forming regions, global SFE as low as 10% can lead to the formation of bound gas-free star clusters.

قيم البحث

اقرأ أيضاً

The realization that most stars form in clusters, raises the question of whether star/planet formation are influenced by the cluster environment. The stellar density in the most prevalent clusters is the key factor here. Whether dominant modes of clu stered star formation exist is a fundamental question. Using near-neighbour searches in young clusters Bressert et al. (2010) claim this not to be the case and conclude that star formation is continuous from isolated to densely clustered. We investigate under which conditions near-neighbour searches can distinguish between different modes of clustered star formation. Near-neighbour searches are performed for model star clusters investigating the influence of the combination of different cluster modes, observational biases, and types of diagnostic and find that the cluster density profile, the relative sample sizes, limitations in observations and the choice of diagnostic method decides whether modelled modes of clustered star formation are detected. For centrally concentrated density distributions spanning a wide density range (King profiles) separate cluster modes are only detectable if the mean density of the individual clusters differs by at least a factor of ~65. Introducing a central cut-off can lead to underestimating the mean density by more than a factor of ten. The environmental effect on star and planet formation is underestimated for half of the population in dense systems. A analysis of a sample of cluster environments involves effects of superposition that suppress characteristic features and promotes erroneous conclusions. While multiple peaks in the distribution of the local surface density imply the existence of different modes, the reverse conclusion is not possible. Equally, a smooth distribution is not a proof of continuous star formation, because such a shape can easily hide modes of clustered star formation (abridged)
We investigate the formation of both clustered and distributed populations of young stars in a single molecular cloud. We present a numerical simulation of a 10,000 solar mass elongated, turbulent, molecular cloud and the formation of over 2500 stars . The stars form both in stellar clusters and in a distributed mode which is determined by the local gravitational binding of the cloud. A density gradient along the major axis of the cloud produces bound regions that form stellar clusters and unbound regions that form a more distributed population. The initial mass function also depends on the local gravitational binding of the cloud with bound regions forming full IMFs whereas in the unbound, distributed regions the stellar masses cluster around the local Jeans mass and lack both the high-mass and the low-mass stars. The overall efficiency of star formation is ~ 15 % in the cloud when the calculation is terminated, but varies from less than 1 % in the the regions of distributed star formation to ~ 40 % in regions containing large stellar clusters. Considering that large scale surveys are likely to catch clouds at all evolutionary stages, estimates of the (time-averaged) star formation efficiency for the giant molecular cloud reported here is only ~ 4 %. This would lead to the erroneous conclusion of slow star formation when in fact it is occurring on a dynamical timescale.
Star formation is known to occur more readily where more raw materials are available. This is often expressed by a Kennicutt-Schmidt relation where the surface density of Young Stellar Objects (YSOs) is proportional to column density to some power, $ mu$. The aim of this work was to determine if column density alone is sufficient to explain the locations of Class 0/I YSOs within Serpens South, Serpens Core, Ophiuchus, NGC1333 and IC348, or if there is clumping or avoidance that would point to additional influences on the star formation. Using the O-ring test as a summary statistic, 95 per cent confidence envelopes were produced for different values of $mu$ from probability models made using the Herschel column density maps. The YSOs were tested against four distribution models: the best-estimate of $mu$ for the region, $mu=0$ above a minimum column density threshold and zero probability elsewhere, $mu=1$, and the power-law that best represents the five regions as a collective, $mu=2.05 pm 0.20$. Results showed that $mu=2.05$ model was consistent with the majority of regions and, for those regions, the spatial distribution of YSOs at a given column density is consistent with being random. Serpens South and NGC1333 rejected the $mu = 2.05$ model on small scales of $sim 0.15 mathrm{pc}$ which implies that small-scale interactions may be necessary to improve the model. On scales above 0.15 pc, the positions of YSOs in all five regions can be well described using column density alone.
We study the relations between gas-phase metallicity ($Z$), local stellar mass surface density ($Sigma_*$), and the local star formation surface density ($Sigma_{rm SFR}$) in a sample of 1120 star-forming galaxies from the MaNGA survey. At fixed $Sig ma_{*}$ the local metallicity increases as decreasing of $Sigma_{rm SFR}$ or vice versa for metallicity calibrators of N2 and O3N2. Alternatively, at fixed $Sigma_{rm SFR}$ metallicity increases as increasing of $Sigma_{*}$, but at high mass region, the trend is flatter. However, the dependence of metallicity on $Sigma_{rm SFR}$ is nearly disappeared for N2O2 and N2S2 calibrators. We investigate the local metallicity against $Sigma_{rm SFR}$ with different metallicity calibrators, and find negative/positive correlations depending on the choice of the calibrator. We demonstrate that the O32 ratio (or ionization parameter) is probably dependent on star formation rate at fixed local stellar mass surface density. Additional, the shape of $Sigma_*$ -- $Z$ -- $Sigma_{rm SFR}$ (FMR) depends on metallicity calibrator and stellar mass range. Since the large discrepancy between the empirical fitting-based (N2, O3N2) to electronic temperature metallicity and the photoionization model-dependent (N2O2, N2S2) metallicity calibrations, we conclude that the selection of metallicity calibration affects the existence of FMR on $Sigma_{rm SFR}$.
103 - Dmitry Bizyaev 2019
We present a sample of 48 nearby galaxies with central, biconical outflows identified by the Mapping Nearby Galaxies at APO (MaNGA) survey. All considered galaxies have star formation driven bi-conical central outflows (SFB), with no signs of AGN. We find that the SFB outflows require high central concentration of the star formation rate. This increases the gas velocity dispersion over the equilibrium limit and helps maintain the gas outflows. The central starbursts increase the metallicity, extinction, and the alpha/Fe ratio in the gas. Significant amount of young stellar population at the centers suggests that the SFBs are associated with the formation of young bulges in galaxies. More than 70% of SFB galaxies are group members or have companions with no prominent interaction, or show asymmetry of external isophotes. In 15% SFB cases stars and gas rotate in the opposite directions, which points at the gas infall from satellites as the primary reason for triggering the SFB phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا