ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting the number of planets around GJ 581. False positive rate of Bayesian signal detection methods

89   0   0.0 ( 0 )
 نشر من قبل Mikko Tuomi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The four-planet system around GJ 581 has received attention because it has been claimed that there are possibly two additional low-mass companions as well - one of them being a planet in the middle of the stellar habitable zone. We re-analyse the available HARPS and HIRES Doppler data in an attempt to determine the false positive rate of our Bayesian data analysis techniques and to count the number of Keplerian signals in the GJ 581 data. We apply the common Lomb-Scargle periodograms and posterior sampling techniques in the Bayesian framework to estimate the number of signals in the radial velocities. We also analyse the HARPS velocities sequentially after each full observing period to compare the sensitivities and false positive rates of the two signal detection techniques. By relaxing the assumption that the radial velocity noise is white, we also demonstrate the consequences that noise correlations have on the obtained results and the significances of the signals. According to our analyses, the number of Keplerian signals favoured by the publicly available HARPS and HIRES radial velocity data of GJ 581 is four. This result relies on the sensitivity of the Bayesian statistical analysis techniques but also depends on the assumed noise model. We also show that the radial velocity noise is actually not white and that this feature has to be accounted for when analysing radial velocities in a search for low-amplitude signals corresponding to low-mass planets. ...



قيم البحث

اقرأ أيضاً

Exoplanet Doppler surveys are currently the most efficient means to detect low-mass companions to nearby stars. Among these stars, the light M dwarfs provide the highest sensitivity to detect low-mass exoplanet candidates. Evidence is accumulating th at a substantial fraction of these low-mass planets are found in high-multiplicity planetary systems. GJ 163 is a nearby inactive M dwarf with abundant public observations obtained using the HARPS spectrograph. We obtain and analyse radial velocities from the HARPS public spectra of GJ 163 and investigate the presence of a planetary companions orbiting it. The number of planet candidates detected might depend on some prior assumptions. Since the impact of prior choice has not been investigated throughly previously, we study the effects of different prior densities on the detectability of planet candidates around GJ 163. We use Bayesian tools, i.e. posterior samplings and model comparisons, when analysing the GJ 163 velocities. We consider models accounting for the possible correlations of subsequent measurements. We also search for activity-related counterparts of the signals we observe and test the dynamical stability of the planetary systems corresponding to our solutions using direct numerical integrations of the orbits. We find that there are at least three planet candidates orbiting GJ 163. The existence of a fourth planet is supported by the data but the evidence in favor of the corresponding model is not yet conclusive. The second innermost planet candidate in the system with an orbital period of 25.6 days and a minimum mass of 8.7 Me is inside the liquid-water habitable zone of the star.
Context. Low mass stars are currently the best targets for searches for rocky planets in the habitable zone of their host star. Over the last 13 years, precise radial velocities measured with the HARPS spectrograph have identified over a dozen super- Earths and Earth-mass planets (msin i<10Mearth ) around M dwarfs, with a well understood selection function. This well defined sample informs on their frequency of occurrence and on the distribution of their orbital parameters, and therefore already constrains our understanding of planetary formation. The subset of these low-mass planets that were found within the habitable zone of their host star also provide prized targets for future atmospheric biomarkers searches. Aims. We are working to extend this planetary sample to lower masses and longer periods through dense and long-term monitoring of the radial velocity of a small M dwarf sample. Methods. We obtained large numbers of HARPS spectra for the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628 and GJ 3293, from which we derived radial velocities (RVs) and spectroscopic activity indicators. We searched them for variabilities, periodicities, Keplerian modulations and correlations, and attribute the radial-velocity variations to combinations of planetary companions and stellar activity. Results. We detect 12 planets, of which 9 are new with masses ranging from 1.17 to 10.5 Mearth . Those planets have relatively short orbital periods (P<40 d), except two of them with periods of 217.6 and 257.8 days. Among these systems, GJ 273 harbor two planets with masses close to the one of the Earth. With a distance of 3.8 parsec only, GJ 273 is the second nearest known planetary system - after Proxima Centauri - with a planet orbiting the circumstellar habitable zone.
We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000K, including 6 4 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 Earth radius planets with orbital periods shorter than 50 days is 0.90 (+0.04/-0.03) planets per star. The occurrence rate of Earth-size (0.5-1.4 Earth radius) planets is constant across the temperature range of our sample at 0.51 (+0.06/-0.05) Earth-size planets per star, but the occurrence of 1.4-4 Earth radius planets decreases significantly at cooler temperatures. Our sample includes 2 Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15 (+0.13/-0.06) planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.
We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI)---the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 hav e probabilities <1% to be astrophysical false positives, and thus may be considered validated planets. 1284 of these have not yet been validated or confirmed by other methods. In addition, we identify 428 KOIs likely to be false positives that have not yet been identified as such, though some of these may be a result of unidentified transit timing variations. A side product of these calculations is full stellar property posterior samplings for every host star, modeled as single, binary, and triple systems. These calculations use vespa, a publicly available Python package able to be easily applied to any transiting exoplanet candidate.
184 - Kaspar von Braun 2011
GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be $0.299 pm 0.010 R_{odot}$. Lit erature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581s effective surface temperature $T_{rm EFF}=3498 pm 56$ K and its luminosity $L=0.01205 pm 0.00024 L_{odot}$. From these measurements, we recompute the location and extent of the systems habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا