ترغب بنشر مسار تعليمي؟ اضغط هنا

Further evidence for large central mass-to-light ratios in massive early-type galaxies

91   0   0.0 ( 0 )
 نشر من قبل Enrico Maria Corsini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. M. Corsini




اسأل ChatGPT حول البحث

We studied the stellar populations, distribution of dark matter, and dynamical structure of a sample of 25 early-type galaxies in the Coma and Abell 262 clusters. We derived dynamical mass-to-light ratios and dark matter densities from orbit-based dynamical models, complemented by the ages, metallicities, and alpha-elements abundances of the galaxies from single stellar population models. Most of the galaxies have a significant detection of dark matter and their halos are about 10 times denser than in spirals of the same stellar mass. Calibrating dark matter densities to cosmological simulations we find assembly redshifts z_{DM} approx 1-3. The dynamical mass that follows the light is larger than expected for a Kroupa stellar initial mass function, especially in galaxies with high velocity dispersion sigma_{eff} inside the effective radius r_{eff}. We now have 5 of 25 galaxies where mass follows light to 1-3 r_{eff}, the dynamical mass-to-light ratio of all the mass that follows the light is large (approx 8-10 in the Kron-Cousins R band), the dark matter fraction is negligible to 1-3 r_{eff}. This could indicate a massive initial mass function in massive early-type galaxies. Alternatively, some of the dark matter in massive galaxies could follow the light very closely suggesting a significant degeneracy between luminous and dark matter.

قيم البحث

اقرأ أيضاً

Dynamical studies of local ETGs and the Fundamental Plane point to a strong dependence of M/L ratio on luminosity (and stellar mass) with a relation of the form $M/L propto L^{gamma}$. The tilt $gamma$ may be caused by various factors, including stel lar population properties, IMF, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform dataset of local ETGs from Prugniel & Simien (1997). We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M/L contributes little to the tilt. We estimate the total M/L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than $M_B sim -20.5$, and increasing with luminosity for the brighter galaxies; we detect no significant differences among S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light, to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamics studies at larger radii.
210 - I. Ferreras 2015
Spectroscopic analyses of gravity-sensitive line strengths give growing evidence towards an excess of low-mass stars in massive early-type galaxies (ETGs). Such a scenario requires a bottom-heavy initial mass function (IMF). However, strong constrain ts can be imposed if we take into account galactic chemical enrichment. We extend the analysis of Weidner et al. and consider the functional form of bottom-heavy IMFs used in recent works, where the high-mass end slope is kept fixed to the Salpeter value, and a free parameter is introduced to describe the slope at stellar masses below some pivot mass scale (M<MP=0.5Msun). We find that no such time-independent parameterisation is capable to reproduce the full set of constraints in the stellar populations of massive ETGs - resting on the assumption that the analysis of gravity-sensitive line strengths leads to a mass fraction at birth in stars with mass M<0.5Msun above 60%. Most notably, the large amount of metal-poor gas locked in low-mass stars during the early, strong phases of star formation results in average stellar metallicities [M/H]<-0.6, well below the solar value. The conclusions are unchanged if either the low-mass end cutoff, or the pivot mass are left as free parameters, strengthening the case for a time-dependent IMF.
101 - M. Capaccioli 2002
The distribution of the radial trends of the mass-to-light ratios (M/L) within an assorted sample of early-type galaxies is discussed. Three classes of galaxies are identified according to their M/L gradients. Two such classes are characterized by th e presence or by the absence of a radial gradient of the dark-matter (DM) distribution. A third class contains objects which are likely undergoing interaction; they exhibit steep M/L gradients which are possibly the result of a wrong assumption on their equilibrium conditions. Finally, a possible correlation between DM content and morphological types is briefly discussed.
We study the dark and luminous mass distributions, circular velocity curves (CVC), line-of-sight kinematics, and angular momenta for a sample of 42 cosmological zoom simulations of massive galaxies. Using a temporal smoothing technique, we are able t o reach large radii. We find that: (i)The dark matter halo density profiles outside a few kpc follow simple power-law models, with flat dark matter CVCs for lower-mass systems, and rising CVCs for high-mass haloes. The projected stellar density distributions at large radii can be fitted by Sersic functions with n>10, larger than for typical ETGs. (ii)The massive systems have nearly flat total CVCs at large radii, while the less massive systems have mildly decreasing CVCs. The slope of the CVC at large radii correlates with v_circ itself. (iii)The dark matter fractions within Re are in the range 15-30% and increase to 40-65% at 5Re. Larger and more massive galaxies have higher dark matter fractions. (iv)The short axes of simulated galaxies and their host dark matter haloes are well aligned and their short-to-long axis ratios are correlated. (v)The stellar vrms(R) profiles are slowly declining, in agreement with planetary nebulae observations in the outer haloes of most ETGs. (vi)The line-of-sight velocity fields v show that rotation properties at small and large radii are correlated. Most radial profiles for the cumulative specific angular momentum parameter lambda(R) are nearly flat or slightly rising, with values in [0.06,0.75] from 2Re to 5Re. (vii)Stellar mass, ellipticity at 5Re, and lambda(5Re) are correlated: the more massive systems have less angular momentum and are rounder, as for observed ETGs. (viii)More massive galaxies with a large fraction of accreted stars have radially anisotropic velocity distributions outside Re. Tangential anisotropy is seen only for galaxies with high fraction of in-situ stars. (Full abstract in PDF)
We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies (ETGs). We combine pixel-based modelling of multiband HST/ACS imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a gNFW profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio $Upsilon_{star}$ for the baryonic mass, we infer distributions for $Upsilon_{star}$ consistent with IMFs that are heavier than the Milky Ways (with a global mean mismatch parameter relative to a Chabrier IMF $mu_{alpha c} = 1.80 pm 0.14$) and halo inner density slopes which span a large range but are generally cuspier than the dark-matter-only prediction ($mu_{gamma} = 2.01_{-0.22}^{+0.19}$). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mas-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا