ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized neutron reflectometry study of Fe16N2 with Giant Saturation Magnetization prepared by N Inter-diffusion in Annealed Fe-N Thin Films

232   0   0.0 ( 0 )
 نشر من قبل Nian Ji
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a synthesis route to grow iron nitride thin films with giant saturation magnetization (Ms) through an N inter-diffusion process. By post annealing Fe/Fe-N structured films grown on GaAs(001) substrates, nitrogen diffuses from the over-doped amorphous-like Fe-N layer into strained crystalline Fe layer and facilitates the development of metastable Fe16N2 phase. As explored by polarized neutron reflectometry, the depth-dependent Ms profile can be well described by a model with the presence of a giant Ms up to 2360 emu/cm3 at near-substrate interface, corresponding to the strained regions of these annealed films. This is much larger than the currently known limit (Fe65Co35 with Ms sim 1900 emu/cm3). The present synthesis method can be used to develop writer materials for future magnetic recording application.



قيم البحث

اقرأ أيضاً

Whether {alpha}double prime-Fe16N2 possesses a giant saturation magnetization (Ms) has been a daunting problem among magnetic researchers for almost 40 years, mainly due to the unshakable faith of famous Slater-Pauling (SP) curve and poor consistency on evaluating its Ms. Here we demonstrate that, using epitaxy and mis-fit strain imposed by an underlying substrate, the in-plane lattice constant of Fe16N2 thin films can be fine tuned to create favorable conditions for exceptionally large saturation magnetization. Combined study using polarized neutron reflectometry and X-ray diffraction shows that with increasing strain at the interface the Ms of these film can be changed over a broad range, from ~2.1T (non-high Ms) up to ~3.1T (high Ms). We suggest that the equilibrium in-plane lattice constant of Fe16N2 sits in the vicinity of the spin crossover point, in which a transition between low spin to high spin configuration of Fe sites can be realized with sensitive adjustment of crystal structure.
Magnetic materials with giant saturation magnetization have been a holy grail for magnetic researchers and condensed matter physicists for decades because of its great scientific and technological impacts. As described by the famous Slater-Pauling cu rve the material with highest Ms is the Fe65Co35 alloy. This was challenged in 1972 by a report on the compound Fe16N2 with Ms much higher than that of Fe65Co35. Following this claim, there have been enormous efforts to reproduce this result and to understand the magnetism of this compound. However, the reported Ms by different groups cover a broad range, mainly due to the unavailability of directly assessing Ms in Fe16N2. In this article, we report a direct observation of the giant saturation magnetization up to 2500 emu/cm3 using polarized neutron reflectometry (PNR) in epitaxial constrained Fe16N2 thin films prepared using a low-energy and surface-plasma-free sputtering process. The observed giant Ms is corroborated by a previously proposed Cluster + Atom model, the characteristic feature of which, namely, the directional charge transfer is evidenced by polarization-dependent x-ray absorption near edge spectroscopy (XANES).
We have determined the depth-resolved magnetization structures of a series of highly ordered Sr$_{2}$CrReO$_{6}$ (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry. The SCRO films deposited directly on (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ or SrTiO$_{3}$ substrates show reduced magnetization of similar width near the interfaces with the substrates, despite having different degrees of strain. When the SCRO film is deposited on a Sr$_{2}$CrNbO$_{6}$ (SCNO) double perovskite buffer layer, the width the interfacial region with reduced magnetization is reduced, agreeing with an improved Cr/Re ordering. However, the relative reduction of the magnetization averaged over the interfacial regions are comparable among the three samples. Interestingly, we found that the magnetization suppression region is wider than the Cr/Re antisite disorder region at the interface between SCRO and SCNO.
278 - W.-T. Lee 2002
Polarized neutron reflectometry (PNR) has long been applied to measure the magnetic depth profile of thin films. In recent years, interest has increased in observing lateral magnetic structures in a film. While magnetic arrays patterned by lithograph y and submicron-sized magnetic domains in thin films often give rise to off-specular reflections, micron-sized ferromagnetic domains on a thin film produce few off-specular reflections and the domain distribution information is contained within the specular reflection. In this paper, we will first present some preliminary results of off-specular reflectivity from arrays of micron-sized permalloy rectangular bars. We will then use specular reflections to study the domain dispersion of an exchange-biased Co/CoO bilayer at different locations of the hysteresis loop.
Nanometric inclusions filled with nitrogen, located adjacent to FenN (n = 3 or 4) nanocrystals within (Ga,Fe)N layers, are identified and characterized using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS ). High-resolution STEM images reveal a truncation of the Fe-N nanocrystals at their boundaries with the nitrogen-containing inclusion. A controlled electron beam hole drilling experiment is used to release nitrogen gas from an inclusion in situ in the electron microscope. The density of nitrogen in an individual inclusion is measured to be 1.4 +- 0.3 g/cm3. These observations provide an explanation for the location of surplus nitrogen in the (Ga,Fe)N layers, which is liberated by the nucleation of FenN (n> 1) nanocrystals during growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا